浅谈如何在初中数学教学中渗透数学思想和数学方法
2018-04-08高玉彬
高玉彬
摘要:中学数学的教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要升华到数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。《课程标准》把数学思想、方法作为基础知识的重要组成部分,在大纲中明确提出来,这不仅是大纲体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。
关键词:初中数学;渗透;思想方法
一、领悟课标要求,把握数学方法
运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
(一)明确基本要求,渗透“层次”教学。
《课程标准》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。 教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《课程标准》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中, 不能随意提高层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而动摇他们的学习信心。
(二)从“方法”了解“思想”,用“思想”指导“方法”。
关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从已知到未知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。
二、遵循認识规律,把握教学原则,实施创新教育
要达到大纲的基本要求,使学生能对数学思想和方法有深刻的理解和灵活运用,教学中应遵循以下几项原则:
(一)渗透“方法”,了解“思想”。
由于初中学生数学知识比较贫乏,抽象思维能力较弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为渗透数学思想和方法的载体。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如《有理数》这一章,与原来部编教材相比,它少了“有理数大小的比较”一节。而它的要求则贯穿在整章之中,在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。
(二)训练“方法”,理解“思想”。
数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中的全部教材,努力挖掘教材中进行数学思想、方法渗透的各种素材,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,也能培养学生养成良好的思维习惯。
(三)掌握“方法”,运用“思想”。
数学知识的学习要经过理解、应用、练习复习等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断感悟的过程。比如运用类比的数学方法,在新概念提出、新知识点的讲授过程中,学生就易于理解和掌握,如在学习二次函数有关性质时,我们可以和一元二次方程的根与系数性质类比。通过重复性的演示,使学生理解和运用类比法。
(四)提炼“方法”,完善“思想”。
教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,教师的概括、分析是十分重要的。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。
总之,有思想和方法的课,能给学生留下长久的思想激动和对知识的深刻理解,对学生以后的学习和工作大有裨益。