川崎病患儿血浆转化生长因子-β和血管内皮生长因子水平与冠状动脉病变的相关性研究
2023-09-15邹瑞瑛张旭王瑾范婉钰郭俊秀滕懿群
邹瑞瑛 张旭 王瑾 范婉钰 郭俊秀 滕懿群
[摘要] 目的 觀察川崎病(Kawasaki disease,KD)患儿血浆转化生长因子-β(transforming growth factor-β,TGF-β)和血管内皮生长因子(vascular endothelial growth factor,VEGF)水平,并探讨其与冠状动脉病变(coronary arterial lesion,CAL)的相关性。方法 选取2020年10月至2022年6月在嘉兴市第二医院儿科住院的KD患儿105例,根据心脏彩超检查结果分为CAL组(20例)与无CAL组(85例),同时选取30例健康体检的儿童为对照组。采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测各组血浆TGF-β、VEGF、血管内皮生长因子受体1(vascular endothelial growth factor receptor-1,VEGFR1)水平,绘制受试者操作特征(receiver operating characteristic,ROC)曲线,比较TGF-β、VEGF单独和联合检测在KD并发CAL预测上的差异。结果 KD患儿静脉注射丙种球蛋白(intravenous immunoglobulin,IVIG)治疗前血浆TGF-β、VEGF和VEGFR1水平明显高于IVIG治疗后(均P<0.05)和对照组(均P<0.05);IVIG治疗后血浆TGF-β、VEGF和VEGFR1高于对照组(均P<0.05);CAL组TGF-β和VEGF水平明显高于无CAL组(均P<0.05);CAL组和无CAL组的VEGFR1差异无统计学意义(P>0.05)。Spearman直线相关分析结果显示,TGF-β与白细胞、C反应蛋白和红细胞沉降率呈正相关(均P<0.05);VEGF与白细胞、红细胞沉降率和TGF-β呈正相关(均P<0.05),与白蛋白呈负相关(P<0.05)。ROC曲线分析显示TGF-β和VEGF联合检测预测KD并发CAL的曲线下面积(area under the curve,AUC)为0.727,高于TGF-β和VEGF单独检测(均P<0.05)。结论 KD患儿TGF-β和VEGF水平均升高,与并发CAL密切相关,TGF-β和VEGF联合检测对KD并发CAL的预测具有重要的临床意义。
[关键词] 川崎病;转化生长因子-β;内皮生长因子;冠状动脉病变
[中图分类号] R725.4 [文献标识码] A [DOI] 10.3969/j.issn.1673-9701.2023.24.002
Changes in the level of plasma transforming growth factor-β and vascular endothelial growth factor in Kawasaki disease children and the association with coronary arterial lesion
ZOU Ruiying1, ZHANG Xu2, WANG Jin1, FAN Wanyu1, GUO Junxiu3, TENG Yiqun2
1.Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; 2.Department of Pediatrics, the Second Hospital of Jiaxing (the Second Affiliated Hospital of Jiaxing University), Jiaxing 314000, Zhejiang, China; 3.Graduate School, Bengbu Medical College, Bengbu 233030, Anhui, China
[Abstract] Objective To observe plasma transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) levels in Kawasaki disease (KD) children and to explore the association with coronary arterial lesion (CAL). Methods A total of 105 children with KD in Department of Pediatrics, the Second Hospital of Jiaxing were recruited in the present study from October 2020 to June 2022. According to the results of the echocardiogram examination, these KD children were divided into two groups, CAL group (n=20) and non-CAL group (n=85). At the same time, 30 healthy children were selected as the control group. Enzyme linked immunosorbent assay (ELISA) was used to detected the plasma levels of TGF-β, VEGF and vascular endothelial growth factor receptor-1 (VEGFR1) in KD children and healthy children. The receiver operating characteristic (ROC) curve was used to compare the difference in prediction of CAL between individual and combined detection of TGF-β, VEGF. Results Compared with healthy controls, the plasma levels of TGF-β, VEGF and VEGFR1 were significantly increased in KD children before intravenous immunoglobulin (IVIG) treatment (all P<0.05), and all the items decreased after IVIG treatment (all P<0.05). However, in KD children after IVIG treatment, levels of TGF-β, VEGF and VEGFR1 were significantly higher than those in healthy controls (all P<0.05). Compared with the non-CAL group, the levels of TGF-β and VEGF were significantly higher in the CAL group (all P<0.05). There was no significant difference in the level of VEGFR1 between two groups (P>0.05). Spearman correlation analysis showed the level of TGF-β was positively correlated with white blood cell count, C-reactive protein and erythrocyte sedimentation rate (all P<0.05). The level of VEGF was positively correlated with white blood cell count, erythrocyte sedimentation rate and TGF-β (all P<0.05), negtively correlated with albumin (P<0.05). The ROC curve result showed that area under the curve (AUC) of combined detection of TGF-β, VEGF in prediction of CAL were 0.727, which was higher than individual detection of TGF-β, VEGF (all P<0.05). Conclusion The plasma levels of TGF-β and VEGF increased in KD children and closely related to occurrence of CAL, clinical application of combined detection of TGF-β and VEGF has important clinical significances for prediction of CAL in KD children.
[Key words] Kawasaki disease; Transforming growth factor-β; Vascular endothelial growth factor; Coronary arterial lesion
川崎病(Kawasaki disease,KD)是兒童时期最常见的全身自限性中小动脉血管炎,以冠状动脉受累最常见[1]。静脉注射丙种球蛋白(intravenous immunoglobulin,IVIG)治疗可有效降低并发冠状动脉病变(coronary arterial lesion,CAL)的概率,但每年仍有大量患儿因没有及时应用IVIG而并发巨大冠状动脉瘤,导致心肌梗死等严重的缺血性心脏病,严重威胁儿童身心健康。近年来,随着KD发病率的逐年增高,早期预测并发CAL的风险已成为研究热点。转化生长因子-β(transforming growth factor-β,TGF-β)是一种调节细胞增殖、生长和分化的细胞因子,具有调节炎症反应和促进血管生成的作用[2-4]。血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种高度特异性的促血管内皮细胞有丝分裂的细胞因子,与其受体血管内皮生长因子受体1(vascular endothelial growth factor receptor-1,VEGFR1)结合后可诱导血管生成[5]。本研究分析KD患儿血浆TGF-β、VEGF和VEGFR1的水平,并探讨其与并发CAL的相关性,旨在为KD并发CAL的预测提供新线索。
1 资料与方法
1.1 一般资料
选取2020年10月至2022年6月在嘉兴市第二医院儿科住院的KD患儿105例为研究对象。纳入标准:①符合日本循环协会的KD诊断标准[1];②住院期间均接受大剂量IVIG和口服阿司匹林治疗,应用IVIG前进行心脏彩超检查,并于IVIG治疗后4周内进行至少2次心脏超声评估冠状动脉的变化。排除标准:①入院前已应用过IVIG的患儿;②住院期间未应用IVIG治疗的患儿;③临床资料不全者。参照冠状动脉病变的诊断和分型标准,根据心脏彩超检查结果将KD患儿分为CAL组与无CAL组[6]。另选取同期进行常规体检的健康儿童30例为对照组。本研究经嘉兴市第二医院医学伦理委员会审批(伦理审批号:JXEY-2020JX022),患儿家属均知情同意。
1.2 方法
①收集KD患儿的实验室指标:白细胞计数、C反应蛋白、红细胞沉降率和白蛋白。实验室指标均为KD患儿IVIG治疗前采集静脉血,嘉兴市第二医院检验科检测获得。②酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA):分别采集健康儿童和KD患儿2个时间点(第1个时间点是在IVIG治疗前;第2个时间点是IVIG治疗后且体温正常3d)的静脉血5ml置于抗凝管中,分离血浆,测定血浆TGF-β、VEGF和VEGFR1水平。操作步骤严格按照试剂盒(上海酶联生物科技有限公司)说明书进行。
1.3 统计学方法
采用SPSS 25.0统计学软件对数据进行处理分析,所有计量资料经正态性检验均非正态分布,故计量资料用中位数(四分位数间距)[M(Q1,Q3)]表示,多组间比较采用Kruskal-Wallis H检验,两组间比较采用Mann-Whitney U检验,配对比较采用配对Wilcoxon符号秩和检验,采用Spearman分析计量资料间的相关性;计数资料用例数(百分率)[n(%)]表示,组间比较采用χ2检验。利用Logistic回归方程拟合联合预测指标,形成新的联合预测因子,绘制受试者操作特征(receiver operating characteristic,ROC)曲线,计算各预测指标的曲线下面积(area under the curve,AUC),分析不同指标对KD并发CAL的预测价值,并应用Medcalc 19.3软件比较各预测指标AUC。以P<0.05为差异有统计学意义。
2 结果
2.1 KD患儿的一般资料
共收集105例KD患儿,其中男63例,女42例,年龄18(11.0,33.5)个月;对照组30例,其中男17例,女13例,年龄22(9.3,34.3)个月;KD患儿和对照组儿童的性别、年龄比较差异均无统计学意义(χ2=1.017,Z=0.545,均P>0.05),具有可比性。KD患儿中完全KD 70例,不完全KD 35例;10例对首剂IVIG治疗无反应;共20例KD患儿并发CAL,其中男13例,女7例,年龄26(12.0,40.5)个月;85例未并发CAL,其中男50例,女35例,年龄17(10.5,30.0)个月。CAL组和无CAL组在性别、年龄方面比较,差异均无统计学意义(χ2=0.257,Z=1.013,均P>0.05),具有可比性。
2.2 KD患儿和对照组儿童的TGF-β、VEGF和VEGFR1比较
对照组儿童和KD患儿IVIG治疗前及治疗后的血浆TGF-β、VEGF和VEGFR1比较,差异均有统计学意义(H=39.635、68.037、32.602,均P<0.05)。KD患儿IVIG治疗前均明显高于IVIG治疗后(t=6.725、7.130、7.363,均P<0.05)和对照组(Z=5.557、7.240、4.658,P<0.05),KD患儿IVIG治疗后均明显高于对照组(Z=3.895、5.573、2.286,均P<0.05),见表1。
2.3 CAL组和无CAL組患儿的TGF-β、VEGF和VEGFR1比较
在KD患儿中,CAL组血浆TGF-β和VEGF水平均高于无CAL组,差异有统计学意义(Z=2.026、2.542,均P<0.05),而CAL组和无CAL组的VEGFR1差异无统计学意义(Z=0.910,P>0.05),见表2。
2.4 KD患儿各指标的相关性分析
Spearman直线相关分析结果显示,TGF-β与白细胞、C反应蛋白和红细胞沉降率均呈正相关(均P<0.05);VEGF与白细胞、红细胞沉降率和TGF-β均呈正相关,而与白蛋白呈负相关(P<0.05),见表3。
2.5 利用Logistic回归模型建立TGF-β和VEGF联合预测因子
以KD并发CAL的情况为因变量,血浆TGF-β和VEGF为自变量,进行Logistic回归拟合,得到回归方程为Logit(P)= –5.642+0.005×TGF-β+0.006× VEGF,见表4。根据文献,对方程进行等式变换,得到联合预测因子=TGF-β+1.2×VEGF[7]。
2.6 TGF-β和VEGF评估KD并发CAL的价值
ROC曲线显示,TGF-β和VEGF联合检测预测KD并发CAL的AUC为0.727,高于TGF-β和VEGF单独检测(Z=2.153、1.867,P<0.05),见表5和图1。
3 讨论
在KD的急性期,冠状动脉血管内皮细胞首先被破坏,中性粒细胞、淋巴细胞和巨噬细胞浸润血管壁,继而血管平滑肌等结构受损,随后血管壁结构重建,后期可出现冠状动脉狭窄、冠状动脉瘤等并发症,并导致心肌梗死[1]。多种细胞因子共同参与KD冠状动脉炎症和损害过程,因此从细胞因子方面探寻与KD并发CAL相关的指标并用于预测CAL的发生对指导KD的临床治疗及改善预后十分重要。
TGF-β是一种细胞因子,对T细胞的活化、增殖和分化各环节进行调控,以维持机体免疫系统的平衡[2]。TGF-β与受体结合后激活相关蛋白并转移到细胞核调节下游基因表达,调节血管内皮细胞损伤和重建[3-4]。多项研究显示TGF-β信号传导通路异常是KD并发CAL的机制之一[8-11]。VEGF是重要的血管生成因子,由血管平滑肌细胞生成,具有多种生物学活性,不仅可增加内皮细胞的通透性,还可促进血管内皮细胞增殖和分裂,刺激新血管形成[5]。在炎症反应过程中,VEGF可作为趋化因子刺激巨噬细胞和中性粒细胞募集,并诱导产生细胞因子,发挥促炎作用。既往研究显示VEGF在KD中表达明显上升,提示VEGF参与KD的炎症反应过程[12-15]。本研究发现KD患儿IVIG治疗前TGF-β、VEGF和VEGFR1水平较对照组明显上升,经IVIG治疗后TGF-β、VEGF和VEGFR1水平均有不同程度的下降,但仍高于对照组,提示TGF-β、VEGF和VEGFR1可作为诊断KD和监测治疗效果的敏感指标。进一步分析发现,KD患儿TGF-β和VEGF表达升高与并发CAL相关。
本研究观察到KD患儿TGF-β、VEGF与白细胞、红细胞沉降率等炎症指标呈正相关,提示TGF-β和VEGF能够一定程度上反映KD的炎症程度,可作为KD的诊断、评估病情和判断预后的敏感指标。与既往研究结果一致,本研究也发现KD患儿VEGF水平与白蛋白呈负相关,这与VEGF具有促进血管通透性有关[16]。
本研究通过ROC曲线分析显示TGF-β和VEGF的AUC分别为0.639和0.683,提示VEGF和TGF-β单独对KD并发CAL发生有一定的预测价值。研究表明,VEGF是TGF-β作用的直接靶点,TGF-β表达升高可通过TGF-β信号通路上调VEGF的表达,增强其生物学功能[17]。本研究结果显示,KD患儿血浆VEGF与TGF-β水平呈正相关,提示VEGF和TGF-β在KD发病机制中起协同作用,因此推测两者联合检测能够更精确地预测CAL的发生。
综上所述,KD患儿的TGF-β和VEGF水平均升高,且与并发CAL密切相关,TGF-β和VEGF联合检测对KD并发CAL的预测具有较高价值。但本研究存在一定的局限性:①由于本研究未使用冠状动脉内径Z值作为判断CAL的依据,可能对CAL的评估有影响;②相关实验室指标结果仅为KD患儿急性期的检测值,缓解期结果未纳入研究,可能会对结论产生一定影响;③KD患儿并发CAL的样本量较小,统计结果可能有偏倚,需要进行大样本、多中心研究。
[参考文献]
[1] FUKAZAWA R, KOBAYASHI J, AYUSAWA M, et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease[J]. Circ J, 2020, 84(8): 1348–1407.
[2] DAHMANI A, DELISLE J S. TGF-β in T cell biology: Implications for cancer immunotherapy[J]. Cancers (Basel), 2018, 10(6): 194.
[3] LI Z, ZENG C, NONG Q, et al. Exosomal leucine-rich- alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β signal pathway[J]. Mol Ther Oncolytics, 2019, 14: 313–322.
[4] HE Z, XUE H, LIU P, et al. miR-4286/TGF-β1/Smad3- negative feedback loop ameliorated vascular endothelial cell damage by attenuating apoptosis and inflammatory response[J]. J Cardiovasc Pharmacol, 2020, 75(5): 446–454.
[5] BRAILE M, MARCELLA S, CRISTINZIANO L, et al. VEGF-A in cardiomyocytes and heart diseases[J]. Int J Mol Sci, 2020, 21(15): 5294.
[6] 中華医学会儿科学分会心血管学组, 中华儿科杂志编辑委员会. 川崎病冠状动脉病变的临床处理建议(2020年修订版)[J]. 中华儿科杂志, 2020, 58(9): 718 724.
[7] 段立伟, 张晟, 林兆奋. 以logistic回归模型构建联合预测因子对脓毒症诊断及预后判断的临床运用[J]. 中华危重病急救医学, 2017, 29(2): 139–143.
[8] SHIMIZU C, OHARASEKI T, TAKAHASHI K, et al. The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease[J]. Hum Pathol, 2013, 44(2): 189–198.
[9] PENG Q, DENG Y, YANG X, et al. Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway[J]. Eur J Pediatr, 2016, 175(5): 705–713.
[10] LEE A M, SHIMIZU C, OHARASEKI T, et al. Role of TGF-β signaling in remodeling of noncoronary artery aneurysms in Kawasaki disease[J]. Pediatr Dev Pathol, 2015, 18(4): 310–317.
[11] FLOSSDORF S, SCHIWY-BOCHAT K H, TEIFEL D, et al. Sudden death of a young adult with coronary artery vasculitis, coronary aneurysms, parvovirus B19 infection and Kawasaki disease[J]. Forensic Sci Med Pathol, 2020, 16(3): 498–503.
[12] JING Y, DING M, FU J, et al. Neutrophil extracellular trap from Kawasaki disease alter the biologic responses of PBMC[J]. Biosci Rep, 2020, 40(9): 1–9.
[13] AN X, LV H, TIAN J, et al. Role of the PTEN/PI3K/ VEGF pathway in the development of Kawasaki disease[J]. Exp Ther Med, 2016, 11(4): 1318–1322.
[14] ZHOU Y, WANG S, ZHAO J, et al. Correlations of complication with coronary arterial lesion with VEGF, PLT, D-dimer and inflammatory factor in child patients with Kawasaki disease[J]. Eur Rev Med Pharmacol Sci, 2018, 22(16): 5121–5126.
[15] SU Y, FENG S, LUO L, et al. Association between IL-35 and coronary arterial lesions in children with Kawasaki disease[J]. Clin Exp Med, 2019, 19(1): 87–92.
[16] HUANG J, ZHANG S. Overexpressed neuropilin-1 in endothelial cells promotes endothelial permeability through interaction with ANGPTL4 and VEGF in Kawasaki disease[J]. Mediators Inflamm, 2021, 2021: 9914071.
[17] SUN L, DONG Z, GU H, et al. TINAGL1 promotes hepatocellular carcinogenesis through the activation of TGF-β signaling-medicated VEGF expression[J]. Cancer Manag Res, 2019, 11: 767–775.
(收稿日期:2022–08–03)
(修回日期:2023–07–18)