解答排列组合问题的几种措施
2022-05-30柏鹏鹏
柏鹏鹏
排列组合是每年高考数学必考的内容之一.排列组合问题侧重于考查分类计数原理和分步计数原理. 解答此类问题,需仔细审题,辨别问题的类型,然后选用合适的计数原理进行求解.本文主要介绍几种求解排列组合问题的常用措施.
一、優先法
大部分的排列组合问题都会涉及有特殊要求的元素或位置,此时需采用优先法求解.采用优先法解题,可以从两个角度入手:(1)特殊元素.先排列特殊元素的顺序,再排列其他元素的顺序;(2)特殊位置.先将满足要求的元素安排在特殊位置上,再将其他元素安排在剩下的位置上.
例1. 1名歌手和4名观众排成一排照相,若歌手不排在两端,则一共有多少种排法.
分析:本题中的歌手为特殊元素,两端的位置为特殊位置,需采用优先法求解.可从特殊元素、特殊位置两个角度进行考虑.
当有多个特殊元素或位置时,往往要分步逐一安排每个特殊的元素或位置,最后根据分步计数原理求解.
二、捆绑法
指定某些元素必须排在一起的问题称为相邻问题.当遇到相邻问题时,常需采用捆绑法求解.把相邻的若干元素捆绑在一起作为一个整体或者一个大元素进行排列,便可保证相邻的元素不会分开.采用捆绑法解答排列组合问题,需分步进行,首先排列捆绑起来的大元素以及没有被捆绑的元素的排列顺序,然后排列捆绑起来的几个元素的顺序,最后运用分步计数原理求解.
例2.(1)7个人排成一排,其中甲、乙必须相邻的排法有多少种?
(2)7个人排成一排,其中甲、乙中间相隔2人的排法有多少种?
运用捆绑法解题时,要注意排列大元素内部的几个元素的顺序,这是很多同学容易忽略或忘记的一个步骤.
三、间接法
对于含“至多”或“至少”字眼的排列组合问题,采用直接法求解,往往需要进行很复杂的讨论,且会出现遗漏或重复计数的情况.此时从问题的反面入手,采用间接法求解比较便捷.先求出所有的排列数,再排除不符合条件的排列数即可解题.这样往往会收到意想不到的效果.
例3.某校开设3门A类选修课,4门B类选修课.某同学一共选了3门选修课,若要求从两类课程中各至少选择一门,则一共有多少种选法?
此题中含有“至少”的字眼,用直接法求解,要考虑的情况太多,需运用间接法,先不考虑任何限制条件,从7门选修课中任选3门,求出所有的情况数,再考虑不符合条件的情况:所选的3门选修课均为A类或B类,排除不满足要求的情况数,即可快速解题.
上述三种方法都是解答排列组合问题的常用方法,但是其适用条件均不同.优先法适用于解答含有特殊元素和位置的题目,捆绑法适用于求解元素相邻的题目,间接法适用于解答从正面求解困难的题目.对于排列组合问题,同学们要多总结归纳,提炼方法,这样才能在解题时做到游刃有余.