与球相关的“切”“接”问题的解决方法
2018-11-29苗本彩张林德
苗本彩 张林德
与球相关的内切与外接问题是近几年高考热点之一,综合化倾向尤为明显,其求解需要学生有较强的空间想象能力和准确的计算能力,从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼,究其原因,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理,下面对球与几何体的切接问题展开探究,以求更好地把握此类问题的解决思路.
1 补形法
因正方體、长方体的外接球半径容易求得,故将一些特殊的几何体补形为正方体或长方体,便可借助外接球为同一个的特点求得.
分析 球心如何确定?主要依据是球的界面性质:过截面圆心与截面垂直的直线必过球心,球心在过BC中点的平面BCD的垂线上,且在过BD中点M的平面ABD的垂线上,两面垂直,所以两垂线交点为N(图4),于是半径可定,但较麻烦,另外,如果注意到CD⊥AD,AD⊥AB,联想到长方体中的棱的特征,不难有补体的想法(图5).答案:A.
2 截面法
解答时首先要找准切点,通过做截面来解决,如果内切的是多面体,则作截面时要抓住多面体过球心的对角面来作.
例5 已知底面边长为a正三棱柱ABC-A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的体积之比与表面积之比1.
分析先画出过球心的截面图,再来探求半径之间的关系,如图9、图10,由题意得两球心O1,O2是重合的,过正三棱柱的一条侧棱AA1和它们的球心作截面,设正三棱柱底面边长为a,
3 构造直角三角形法
首先确定球心位置,借助外接球的性质——球心到多面体的顶点的距离等于球的半径,寻求球心到底面中心的距离、半径、顶点到底面中心的距离构造直角三角形,利用勾股定理求半径.
5 向量法
例9 己知在三棱锥P-ABC中,PA⊥PB,PB⊥PC,PC⊥PA,且PA=2PB=2PC=2,求该三棱锥外接球的表面积.
分析本题的关键是求出外接球的半径r,除了补形法或轴截面法外,还可用向量法求半径.
球的切接问题变化多端,但最终转化为规则几何体(正方体、长方体、正四面体、正三棱锥)的问题处理,这是不变的规则.