APP下载

回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量变化

2017-04-26沈留红巫晓峰肖劲邦姜思汛邓俊良左之才傅宏庆曹随忠余树民张有瑞

浙江农业学报 2017年4期
关键词:产奶量泌乳奶牛

沈留红,巫晓峰,肖劲邦,姜思汛,邓俊良,左之才,傅宏庆,曹随忠,余树民,*,张有瑞

(1.四川农业大学 动物医学院 动物疫病与人类健康四川省重点实验室,奶牛疾病研究中心, 四川 成都 611130; 2.江苏农牧科技职业学院,江苏 泰州 225300; 3.河北省廊坊市农业局水产站,河北 廊坊 065000)

回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量变化

沈留红1,巫晓峰1,肖劲邦1,姜思汛1,邓俊良1,左之才1,傅宏庆2,曹随忠1,余树民1,*,张有瑞3

(1.四川农业大学 动物医学院 动物疫病与人类健康四川省重点实验室,奶牛疾病研究中心, 四川 成都 611130; 2.江苏农牧科技职业学院,江苏 泰州 225300; 3.河北省廊坊市农业局水产站,河北 廊坊 065000)

为探究回乳期奶牛血清中生长激素(GH)、胰岛素(INS)、氢化可的松(HC)、转化生长因子β1(TGF-β1)和胰岛素样生长因子1(IGF-1)含量的变化及其相关性。试验选择规模化奶牛场日产奶量为(15.43 ± 2.10) kg,即将干乳的妊娠后期健康中国荷斯坦奶牛20头。干乳开始当天记为第0天,分别采集第0、1、3、5、7、9和11天奶牛尾静脉血,ELISA法检测血清中GH、INS、HC、TGF-β1和IGF-1含量并对结果进行统计学处理,分析其在奶牛回乳过程中的变化规律及其相关性。结果显示,回乳期奶牛血清GH、INS、HC和TGF-β1含量在第0至1天变化不显著(P>0.05);血清GH和HC含量第3至11天依次降低且差异均极显著(P<0.01),其中血清HC含量第3天极显著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差异均极显著(P<0.01);血清TGF-β1含量第3至11天差异性均不显著(P>0.05);血清IGF-1含量依次呈阶梯式下降趋势,第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之间均差异不显著(P>0.05),但第0至1天、第3至5天、第7至11天3阶段之间差异极显著(P<0.01)。回乳期奶牛血清GH、INS、TGF-β1和IGF-1含量变化两两间呈极显著相关(P<0.01);HC含量变化与GH、INS和IGF-1含量变化均呈极显著相关(P<0.01),与TGF-β1含量变化呈显著负相关(P<0.05)。

回乳期奶牛;生长激素;胰岛素;氢化可的松;转化生长因子β1;胰岛素样生长因子1

激素在哺乳动物生长发育过程中具有不可替代的调控作用,其中直接调控乳腺发育和泌乳的激素主要有生长激素(growth hormone,GH)、胰岛素(insulin,INS)、氢化可的松(hydrocortisone,HC)、催乳素(prolactin, PRL)、雌激素(estrogen, E)和孕酮(progesterone,P4)等[1-2],它们通过与转化生长因子β1(transforming growth factor β1,TGF-β1)、胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)、信号转导和转录激活因子5(signal transduction and transcriptional activation factor of 5,STAT5)等[3]细胞因子相互作用而形成乳腺发育和泌乳的调控网络。泌乳相关激素对人、小鼠、奶牛等动物泌乳期的影响已有研究,并显示均与泌乳量呈一定的相关性[4-6]。由于奶牛经过泌乳期,消耗大量能量和营养物质,在妊娠后期,为保证胎犊宫内生长发育及分娩后再次泌乳做充分准备,奶牛需要经过一段时间的回乳期后进入干乳期,使乳房更新乳腺组织,另外,不适当的回乳方法会增加干乳期及分娩后奶牛乳房炎的发生率,而目前关于回乳期奶牛泌乳相关激素和因子的变化规律及其相关性研究尚未见报道。因此,本试验旨在探究回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量变化规律及其相关性,以进一步研究回乳期奶牛相关泌乳激素的调控机理,以及为寻求更安全有效的回乳技术提供理论依据。

1 材料与方法

1.1 材料

1.1.1 试验动物

试验选择四川省某规模化奶牛场半封闭统一舍饲,体质量(582±41)kg、2~4胎中国荷斯坦奶牛51头。从中选择体况良好,临床检查健康,乳房、乳汁均正常,即将进入回乳期,产奶量为(15.43±2.10)kg的妊娠后期奶牛20头。

1.1.2 试验试剂

牛GH、INS、HC、TGF-β1和IGF-1双抗体夹心酶联免疫吸附检测(ELISA)试剂盒,均由美国RD公司提供。

1.2 试验方法

1.2.1 回乳方式

采用逐渐干奶法[7-8],方法:停喂多汁饲料,减少精料喂量,以青干草为主,控制饮水,适当加强运动。在回乳第1天,挤奶次数由3次改为2次,第2天改为1次,逐渐减少挤奶次数,当奶牛日产奶量为3~4 kg时,停止挤奶。

1.2.2 血清收集

奶牛回乳开始当天记为第0天,依次采集第0、1、3、5、7、9和11天尾静脉血10 mL,置于未加抗凝剂的离心管中,室温下静置1 h,离心力352g离心10 min,转移上层血清于EP管中,-20 ℃冻存,待检。

1.2.3 ELISA检测

采用双抗体夹心酶联免疫吸附技术(ELISA)测定牛GH、INS、HC、TGF-β1和IGF-1含量,步骤严格按照说明书进行。

1.3 统计分析

采用SPSS 19.0软件进行统计学分析,K-S检验计量资料是否服从正态分布,以平均数±标准差(Mean ± SD)表示,两组间采用独立样本t检验,多组间比较采用单因素方差分析,相关性分析采用双变量Pearson相关分析,P<0.05为差异有统计学意义。

2 结果与分析

2.1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

由表1可知,回乳期血清GH、INS、HC、TGF-β1和IGF-1含量在第0至1天变化均不显著(P>0.05);血清GH和HC含量第3至11天依次降低且差异均极显著(P<0.01),其中血清HC含量第3天极显著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差异均极显著(P<0.01);血清TGF-β1含量第3至11天差异性均不显著(P>0.05);血清IGF-1含量依次呈阶梯式下降趋势,但第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之间差异均不显著(P>0.05),而第0至1天、第3至5天、第7至11天3个阶段之间差异极显著(P<0.01)。

2.2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相关性

由表2可知,回乳期奶牛血清GH、INS、TGF-β1和IGF-1含量变化两两间呈极显著相关(P<0.01),其中血清GH与HC和IGF-1、INS与TGF-β1极显著正相关(P<0.01),血清GH与INS和TGF-β1、INS与HC和IGF-1、TGF-β1与IGF-1极显著负相关(P<0.01),血清HC与TGF-β1显著负相关(P<0.05)。

表1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

Table 1 Levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

时间Time指标Index(n=20)GH/(ng·mL-1)INS/(nIU·mL-1)HC/(ng·mL-1)TGF-β1/(ng·mL-1)IGF-1/(ng·mL-1)第0天0thday360.90±11.61Aa421.76±33.53F958.90±40.92B184.20±12.38B56.04±3.81A第1天1stday349.96±16.33Aa430.35±26.56F946.20±54.49B183.72±9.68B54.88±3.93A第3天3rdday328.12±11.57Ab482.43±11.67E1181.77±67.44A236.38±14.34A49.03±1.53B第5天5thday287.75±14.07B535.81±18.20D855.35±46.27C231.87±10.44A46.78±1.70B第7天7thday247.75±15.45C593.19±21.36C752.94±26.60D243.56±23.85A43.25±2.59Ca第9天9thday210.74±15.50D638.95±20.62B689.82±27.15E229.95±15.66A42.20±2.76Cab第11天11thday177.14±12.89E702.92±27.26A556.67±25.27F237.68±15.00A38.20±1.08Cb

同列数据后无相同大、小写字母的分别表示处理间差异极显著(P<0.01)与显著(P<0.05)。

Data followed by no same uppercase or lowercase letters within the same column indicated significant difference atP<0.01 andP<0.05, respectively.

表2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相关性

Table 2 Correlation between levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

指标IndexGHr值rvalueP值PvalueINSr值rvalueP值PvalueHCr值rvalueP值PvalueTGF-β1r值rvalueP值PvalueIGF-1r值rvalueP值PvalueGH——-0.956**<0.0010.824**<0.001-0.606**<0.0010.901**<0.001INS——-0.812**<0.0010.634**<0.001-0.885**<0.001HC——-0.296*0.0390.893**<0.001TGF-β1——-0.706**<0.001IGF-1——

r,相关系数;*与**分别代表相关性显著(P<0.05)与极显著(P<0.01)。

r, Correlation coefficient; * and ** indicated statistically significant correlation atP<0.05 andP<0.01, respectively.

3 讨论

3.1 回乳期奶牛血清GH含量的变化

GH是一种由脑垂体分泌的单一肽链蛋白质激素,具有促进生长发育、调控泌乳等作用[9-10]。运用牛生长素可调节奶牛机体物质代谢,提高饲料转化率,增加产奶量[11-12]。Macrina[13]研究表明,GH可提高奶牛总血流量并增加肝脏丙酸异生成糖的能力,降低总氧化量,提高乳腺血流量,促使奶牛动用机体储存物质,增加葡萄糖利用率。对早期泌乳奶牛注射GH可提高乳房利用营养物质合成牛奶的效率,增加产奶量。Hadi等[14]和Kawashima等[15]均发现,奶牛GH受体和IGF-1表达量越高,产奶量越高,主要通过JAK2/STAT5信号通路、IGF-1和GH受体等增加乳腺血流量,降低外周组织对INS的应答,使营养成分向乳腺聚集,促进乳腺泌乳[16]。本研究结果显示,在奶牛回乳过程中,GH含量呈下降趋势,可能是减少了挤奶刺激,乳房GH受体表达受到抑制,进而反馈性的抑制垂体分泌GH,也可能是由于怀孕末期,为满足胎犊宫内快速发育需求导致。

3.2 回乳期奶牛血清INS含量的变化

INS具有加强糖原合成、维持血糖恒定并调控泌乳等作用[17]。其可激活胰岛素亚基受体I(IRS-I),通过配体约束力和自动磷酸化的诱导,促使INS受体蛋白位点生成,从而调控乳腺上皮细胞乳糖、乳脂的生物合成[18]。但INS对反刍动物乳腺发育的作用仍存在争议,佟慧丽等[19]使用INS处理奶山羊乳腺上皮细胞,发现细胞活力无明显变化。陈建晖等[20]使用INS对奶牛乳腺上皮细胞进行类似处理后细胞活力下降。田青等[21]表示INS对奶牛泌乳细胞生长及分化均有促进作用。本研究结果显示,在奶牛回乳过程中,血清INS含量在第0至1天变化不显著(P>0.05),在第3至11天依次升高且差异均极显著(P<0.01),可能由于回乳期间GH含量降低,减少其对INS的抑制作用,并且由于怀孕后期宫内胎犊发育需要大量糖脂沉积,共同促进机体释放INS。

3.3 回乳期奶牛血清HC含量的变化

HC是哺乳动物肾上腺皮质分泌的主要糖皮质激素之一,近年来,关于HC对提高奶牛泌乳量及改善乳品质逐渐成为研究热点。HC主要通过结合乳腺细胞胞内核受体,启动并调控泌乳相关基因表达和乳蛋白合成等相关基因组机制来实现其生理和药理功能[22-23]。Kabotanski等[24]发现,HC能够增强PRL对酪蛋白mRNAs累积,进而对奶牛乳腺上皮细胞增殖起重要调控。本研究结果显示,在奶牛回乳过程中,血清HC含量在第0至1天差异性不显著(P>0.05),第3天极显著高于其余各天(P<0.01),可能是由于奶牛饲粮成分和饲养环境等改变造成的应激使HC含量升高。第3至11天依次降低且差异均极显著(P<0.01),推测在奶牛回乳过程中,PRL表达量下降[25],促使乳腺减少其泌乳细胞胞内核受体表达量,反馈抑制肾上腺皮质分泌HC,降低产奶量,也从正面表明了HC在奶牛回乳中的重要作用。

3.4 回乳期奶牛血清TGF-β1含量的变化

TGF-β1是一种多效的细胞因子,可影响上皮细胞增殖、凋亡并维持细胞外基质稳态,对于乳腺形态发生及分泌功能有重要作用。已有研究表明,TGF-β1可诱导乳腺上皮干细胞群衰老,抑制乳腺发育[26],并与乳腺泌乳的终止信号密切相关[27]。另外,TGF-β1可减少乳腺上皮细胞由PRL诱导的β-酪蛋白mRNA和蛋白表达水平,且对蛋白水平的抑制更明显[28],说明,TGF-β1在牛乳腺退化过程中对抑制细胞生长起重要调控作用[29],Vries等[30]指出TGF-β1在奶牛回乳后1周内达到最高,本研究发现,在奶牛回乳过程中,血清TGF-β1含量在第0至1天变化均不显著(P>0.05),第0至1天极显著低于第3至11天,且第3至11天差异性均不显著(P>0.05),与上述研究结果趋势一致,可能是由于奶牛GH降低,增强TGF-β1前体相关肽活性[31],促进乳腺中TGF-β1的表达,减少β-酪蛋白mRNA和蛋白水平,降低奶牛泌乳量。

3.5 回乳期奶牛血清IGF-1含量的变化

IGF-1是一类功能复杂的多肽因子,可促进乳腺泌乳,特别是介导GH的催乳作用[3]。研究表明,乳腺组织中存在IGF-1及其受体,对早期泌乳奶牛注射GH,增加了IGF-1及其受体表达量[13]。另外,IGF-1可直接通过其受体作用于乳腺,对乳腺最终分化完全、发育成熟、乳汁生成以及新生儿的生长发育有调控作用[32],Murney等[33]和Hernndez等[34]也均表示IGF-1与奶牛产奶量相关性显著。本研究指出,在奶牛回乳过程中,血清IGF-1含量依次呈阶梯式下降,而第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之间差异均不显著(P>0.05),但第0至1天、第3至5天、第7至11天三阶段之间差异极显著(P<0.01),与上述结果趋势一致,可能是由于GH降低,其与IGF-1结合减少,反馈抑制乳腺泌乳细胞泌乳。表明奶牛IGF-1不仅在奶牛青春期乳腺生长和泌乳期起正向调控,且在奶牛回乳期可通过降低IGF-1含量的方法,促进奶牛回乳。

3.6 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1间的相关性

神经内分泌的多种激素与乳腺外组织及乳腺分泌的多种生长因子相互协同,以内分泌、旁分泌和自分泌等方式共同调节乳腺的生长发育和泌乳[2]。Rhoads等[12]研究表明,泌乳主要受GH调控,其主要通过IGF-1介导发挥泌乳作用[3],且在注射GH后,可提高奶牛产奶量[13]。本研究中,奶牛回乳期GH含量与IGF-1含量均降低,且呈极显著正相关(P<0.01),表明在奶牛回乳过程中,IGF-1和GH相互影响,协同调控奶牛泌乳,降低产奶量。另有研究资料表明,HC通过促进GH对葡萄糖的摄取方式,增加泌乳量[35],但INS与GH在泌乳过程中存在拮抗作用,当血清INS含量较高时,INS竞争性抑制GH表达,并调控葡萄糖转运至非乳腺组织,使乳腺对葡萄糖摄取不敏感,而血清INS含量较低时,GH呈高表达,共同调节乳腺与乳腺外组织的营养竞争,使营养向乳腺转移,促进乳腺发育和乳的合成[36]。本研究显示,奶牛回乳期,GH与HC呈极显著正相关,而与INS呈极显著负相关(P<0.01),表明奶牛回乳时,GH、HC均降低,而INS与GH仍存在明显拮抗。有研究指出,在乳腺退化过程中,TGF-β1在转录水平及蛋白水平的表达均增加[37],抑制GH受体、IGF-1表达,减少HC活性[38],在INS促使机体营养物质不向乳腺聚集的基础上,诱导乳腺导管快速退化[37]。本研究结果显示,在奶牛回乳过程中,TGF-β1含量与GH、IGF-1含量呈极显著负相关(P<0.01),与HC含量呈显著负相关(P<0.05),与INS含量呈极显著正相关(P<0.01),表明在奶牛回乳期,GH、HC和IGF-1是奶牛回乳的负调控因子,而INS和TGF-β1是奶牛回乳的正调控因子。

[1] 文静,卜登攀, 王建发, 等. 激素调控乳蛋白合成的作用及其分子机制[J]. 华北农学报, 2012, 27(增刊):111-115. WEN J, BU D P, WANG J F, et al.Progress in the regulation role of lactoprotein synthesis by hormone and its molecular mechanism[J].ActaAgriculturaeBoreali-Sinica, 2012, 27(Suppl.): 111-115.(in Chinese with English abstract)

[2] OGATA Y, YU G M, HIDAKA T, et al. Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation [J].Theriogenology, 2016, 86(6):1421-1426

[3] BACH L A. Insulin-like growth factor binding proteins—an update [J].PediatricEndocrinologyReviews:Per, 2015, 13(2):521-530.

[4] WANG J F, FU S P, LI S N, et al. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells [J].InternationalJournalofMolecularSciences, 2013, 14(11):21474-21488.

[5] 苗培. 催乳素及其受体的研究进展[J]. 中国畜牧兽医文摘, 2016, 32(3):55. MIAO P. The research progress of prolactin and its receptor [J].ChinaAnimalHusbandryandVeterinaryAbstract, 2016, 32(3):55.(in Chinese)

[6] 黄利,李利民,刘之恒,等. 乳癖2号汤对乳腺增生豚鼠雌孕激素水平及病理形态的影响[J]. 四川中医, 2013, 31(1):61-63. HUANG L, LI L M, LIU Z H, et al. Breast 2 soup for hyperplasia of mammary glands guinea pig female progesterone level and the influence of the pathologic morphology [J].JournalofSichuanofTraditionalChineseMedicine, 2013, 31(1):61-63.(in Chinese)

[7] ZOBEL G, LESLIE K. Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off [J].JournalofDairyScience, 2013, 96(8):5064-5071.

[8] TUCKER C B, LACY-HULBERT S J, WEBSTER J R. Effect of milking frequency and feeding level before and after dry off on dairy cattle behavior and udder characteristics[J].JournalofDairyScience, 2009, 92(7):3194-3203.

[9] STEYN F J. Nutrient sensing overrides somatostatin and growth hormone-releasing hormone to control pulsatile growth hormone release [J].JournalofNeuroendocrinology, 2015, 27(7):577-587.

[10] BROWN-BORG H M. Reduced growth hormone signaling and methionine restriction: Interventions that improve metabolic health and extend life span [J].AnnalsoftheNewYorkAcademyofSciences, 2015, 1363(1):40-49.

[11] FORSYTH I A, WALLIS M. Growth hormone and prolactin-molecular and functional evolution [J].JournalofMammaryGlandBiologyandNeoplasia, 2002, 7(3):291-312.

[12] RHOADS M L, MEYER J P, KOLATH S J, et al. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows [J].JournalofDairyScience, 2008, 91(5):1802-1813.

[13] MACRINA A L, KAUF A C W, KENSINGER R S. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health [J].JournalofDairyScience, 2011, 94(9):4566-4573.

[14] HADI Z, ATASHI H, DADPASAND M, et al. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein Dairy Cows [J].IranianJournalofVeterinaryResearch, 2015, 16(3):294-298.

[15] KAWASHIMA C, MUNAKATA M, MATSUI M, et al. Polymorphism in promoter region of growth hormone receptor is associated with potential production capacity of insulin-like growth factor-1 in pre-pubertal Holstein heifers [J].JournalofAnimalPhysiologyandAnimalNutrition, 2016, 100(6):1037-1040.

[16] LUNDBERG E, KRISTROM B, JONSSON B, et al. Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain [J].BMCEndocrineDisorders, 2015, 15(1):1-14.

[17] RIEHLE C, ABEL E D. Insulin signaling and heart failure [J].CirculationResearch, 2016, 118(7):1151-1169.

[18] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].JournalofDairyScience, 2006, 89(4):1222-1234.

[19] 佟慧丽,高学军,李庆章,等. 胰岛素、催乳素对奶山羊乳腺上皮细胞泌乳功能的影响[J]. 畜牧兽医学报, 2008, 39(6):721-725. TONG H L, GAO X J, LI Q Z, ea al. Impacting of insulin and prolactin on mammary gland epithelial cell line [J].ChineseJournalofAnimalandVeterinarySciences, 2008, 39(6):721-725.(in Chinese with English abstract)

[20] 陈建晖,佟慧丽,李庆章,等. 胰岛素、催乳素和孕酮对奶牛乳腺上皮细胞泌乳功能的影响[J]. 中国奶牛, 2008(8):9-13. CHEN J H, DONG H L, LI Q Z, et al. Influence of insulin, prolactin and progesterone on milk-secretion of mammary gland epithelial cell in dairy cow [J].ChinaDairyCattle, 2008, 8: 9-13.(in Chinese with English abstract)

[21] 田青,季昀,庞学燕,等. 胰岛素对奶牛乳腺上皮细胞酪蛋白合成调节机理的研究[J]. 动物营养学报, 2013, 25(3):550-560. TIAN Q, JI Y, PANG X Y, et al. A study of insulin action mechanism on casein synthesis of bovine mammary epithelial cells [J].ChineseJournalofAnimalNutrition, 2013, 25(3):550-560.(in Chinese with English abstract)

[22] 李敏. 新型糖皮质激素对肥大细胞脱颗粒的快速作用及其机制研究[D]. 上海:第二军医大学, 2010. LI M. New glucocorticoid on mast cell degranulation quick effect and its mechanism [D]. Shanghai: Second Military Medical University, 2010.(in Chinese with English abstract)

[23] SHEEHY P A, NICHOLAS K R,WYNN P C. An investigation of the role of insulin in bovine milk protein gene expression in mammary explant culture [J].AsianAustralasianJournalofAnimalSciences, 2000, 13:272-275.

[24] KABOTYANSKI E B, RIJNKELS M, FREEMANZADROWSKI C, et al. Lactogenic hormonal induction of long distance interactions between Β-casein gene regulatory elements [J].JournalofBiologicalChemistry, 2009, 284(34):22815-22824.

[25] LITTLEJOHN M D, HENTY K M, TIPLADYi K, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle [J].NatureCommunications, 2014, 5(4):5861-5861.

[26] YANG G, ZHOU J, TENG Y, et al. Mesenchymal TGF-β signaling orchestrates dental epithelial stem cell homeostasis through wnt signaling [J].StemCells, 2014, 32(11):2939-2948.

[27] GRONER B. Transcription factor regulation in mammary epithelial cells [J].DomesticAnimalEndocrinology, 2002, 23(23):25-32.

[28] KLLEINBERG D L, FELDMAN M, RUAN W. IGF-1: An essential factor in terminal end bud formation and ductal morphogenesis [J].JournalofMammaryGlandBiology&Neoplasia, 2000, 5(1):7-17.

[29] ZARZYNSKA J, GAJKOWSKA B, WOJEWODZKA U, et al. Apoptosis and autophagy in involuting bovine mammary gland is accompanied by up-regulation of TGF-beta1 and suppression of somatotropic pathway [J].PolishJournalofVeterinarySciences, 2007, 10(1):1-9.

[30] VRIES L D D, CASEY T, DOVER H, et al. Effects of transforming growth factor-β on mammary remodeling during the dry period of dairy cows [J].JournalofDairyScience, 2011, 94(12):6036-6046.

[31] ZHANG Y, MORGAN R, CHEN C, et al. Abstract A120: Tumor-educated B cells acquire LAP/TGF-β1 and PD-L1 expression and suppress antitumor immune response [J].CancerImmunologyResearch, 2016, 4(Suppl. 1):16-19.

[32] NAWATHE A R, CHRISTIAN M, KIM S H, et al. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders [J].ClinicalEpigenetics, 2016, 8(1):1-13.

[33] MURNEY R, STELWAGEN K, WHEELER T T, et al. The effects of milking frequency on insulin-like growth factor 1 signaling within the mammary gland of dairy cows [J].JournalofDairyScience, 2015, 98(8):5422-5428.

[34] HEERNANDEZ H, FLORES J A, DELGADILLO J A, et al. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats [J].AnimalScienceJournal, 2015, 87(4):484-491.

[35] 李蔚辉,魏学鑫. 糖皮质激素的信号转导系统[J]. 亚太传统医药, 2007, 3(12):21-25. LI W H, WEI X J. Signal transduction system of glucocorticoid [J].Asia-PacificTraditionalMedicine, 2007, 3(12):21-25.(in Chinese)

[36] 赵国丽,宫艳斌,韩元,等. 激素和生长因子调控奶牛乳腺发育的研究进展[J]. 中国奶牛, 2011 (6):25-30. ZHAO G L, GONG Y B, HAN Y, et al. Advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].ChinaDairyCattle, 2011 (6):25-30.(in Chinese with English abstract)

[37] WUU W J, LEE C F, HSIN C H, et al. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism [J].JournalofCellularBiochemistry, 2008, 104(5):1647-1659.

[38] SEERRA R, CROWLEY M R. Mouse models of transforming growth factor β impact in breast development and cancer [J].EndocrineRelatedCancer, 2006, 12(4):749-760.

(责任编辑 卢福庄)

Changes of GH, INS, HC, TGF-β1 and IGF-1 levels in cows’ serum during milk withdrawal period

SHEN Liuhong1, WU Xiaofeng1, XIAO Jinbang1, JIANG Sixun1, DENG Junliang1, ZUO Zhicai1, FU Hongqing2, CAO Suizhong1, YU Shumin1,*, ZHANG Yourui3

(1.TheKeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince,TheMedicalResearchCenterforCowDisease,CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Chengdu611130,China; 2.JiangsuAgri-animalHusbandryVocationalCollege,Taizhou225300,China; 3.AgriculturalBureauofLangfangCity,Langfang065000,China)

In order to explore the changes and correlation among the levels of growth hormone (GH), insulin (INS), hydrocortisone (HC), TGF-β1 and IGF-1 in cows’ serum during the period of milk withdrawal. Twenty healthy Chinese Holstein cows in late pregnancy that gave (15.43±2.10) kg milk per day were used, which were ready to dry milk. The day when cows began to dry milk was recorded as the 0 d. The cows’ venous blood from the tail on the day 0, 1, 3, 5, 7, 9 and 11 were collected. ELISA was used to evaluate the levels of GH, INS, HC, TGF-β1 and IGF-1 in serum to analyze the changes and correlation among them. The results showed that, during the period of milk withdrawal, the changes of GH, INS, HC and TGF-β1 levels in serum were not obvious from the day 0 to the day 1 (P>0.05). The levels of GH and HC in serum were both on the decline and had significant difference from the day 3 to the day 11 (P<0.01), and the levels of GH in serum on the day 3 was significantly higher than those on the other days (P<0.01). The levels of INS in serum was on the rise and had significant (P<0.01) difference from the day 3 to the day 11, while the levels of TGF-β1 in serum had no significant (P>0.05) difference from the day 3 to the day 11. The levels of IGF-1 in serum showed downward trend in ladder type, and the difference among levels of IGF-1 in serum on the day 0 and day 1, day 3 and day 5, day 7 and day 9, day 9 and day 11 were not obvious (P>0.05), while IGF-1 levels among 0-1 d, 3-5 d and 7-11 d had significant (P<0.01) difference. There was significant (P<0.01) correlation among the levels of GH, INS, TGF-β1 and IGF-1 in cows’ serum separately during the period of milk withdrawal. The HC levels showed significant (P<0.01) correlation with GH, INS and IGF-1 levels, while it showed significant (P<0.05) negative correlation with TGF-β1 levels.

cows in milk withdrawal period; GH; INS; HC; TGF-β1; IGF-1

http://www.zjnyxb.cn

10.3969/j.issn.1004-1524.2017.04.05

2016-11-01

四川省教育厅重点项目(15ZA0024);江苏农牧科技职业学院产业发展关键技术创新项目(NSF201604);四川农业大学双支计划项目

沈留红(1979—),男,江苏如皋人,副教授,博士研究生,从事反刍动物疾病及繁殖新技术研究,E-mail:shenlh@sicau.edu.cn

*通信作者,余树民,E-mail:yayushumin@163.com

S857.2;[S811.2]

A

1004-1524(2017)04-0548-07

浙江农业学报ActaAgriculturaeZhejiangensis, 2017,29(4): 548-554

沈留红,巫晓峰,肖劲邦,等. 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量变化[J]. 浙江农业学报, 2017, 29(4): 548-554.

猜你喜欢

产奶量泌乳奶牛
中西兽医防治母猪泌乳障碍的探讨
乍暖还寒时奶牛注意防冻伤
夏季奶牛如何预防热应激
荷斯坦牛产后前7 天日产奶量影响因素分析:南京地区牧场案例分析
不来月经加上泌乳,说不定是脑子长瘤了
冬季奶牛多产奶有啥法儿
荷斯坦牛各胎次产奶量规律研究及相关性分析
奶牛吃草
不来月经加上泌乳,说不定是脑子长瘤了
不同泌乳阶段驼乳理化指标和体细胞数的测定分析