APP下载

Tau的病理性修饰与新生儿缺氧缺血性脑损伤*

2015-04-15

中国病理生理杂志 2015年1期
关键词:髓鞘病理性脑损伤

肖 婕 , 李 凡

(昆明医科大学基础医学院病理学与病理生理学系,云南 昆明 650500)



·综 述·

Tau的病理性修饰与新生儿缺氧缺血性脑损伤*

肖 婕 , 李 凡△

(昆明医科大学基础医学院病理学与病理生理学系,云南 昆明 650500)

Tau是脑内含量最多的微管相关蛋白(microtubule-associated proteins, MAPs),其病理性改变与多种中枢神经系统疾病密切相关。

1 Tau的生理功能

Tau在神经细胞的轴突广泛表达,主要起促进微管(microtubulin, MT)形成和稳定MT的作用,并参与细胞内物质运输、有丝分裂、神经递质和信号传递等生理过程。tau基因定位于17号染色体,含碱基100 kb,16个外显子,其结构被分为N端、脯氨酸富含区域、微管结合区域和C端4部分。其中的脯氨酸富含区含有许多磷酸化位点,能被其它蛋白包括酪氨酸激酶Fyn的SH3结构域识别,进而发生磷酸化修饰,参与tau生理和病理功能的调控[1]。目前的研究发现,与成熟脑相比发育脑的tau呈现特殊的磷酸化,并在髓鞘化进程中发挥重要作用。

2 发育脑tau的特点

2.1 Tau参与调控轴突生长和神经元迁移 Takei等[2]的研究发现,敲除tau和MAP1B基因后,小鼠出现神经元轴突生长抑制和迁移障碍。该项研究采用tau缺陷小鼠(tau-)和MAP1B缺陷小鼠(MAP1B-)繁育出具有C57BL/6J (>93%) ×129/Sv (< 7%)遗传背景的tau-/-MAP1B-/-、tau+/+MAP1B-/-、tau-/-MAP1B+/+转基因小鼠,在出生后0.5 d(postnatal 0.5 days,P0.5d)和出生后4周(postnatal 4 weeks,P4w)对tau+/+MAP1B+/+、tau+/+MAP1B-/-、tau-/-MAP1B+/+和tau-/-MAP1B-/-小鼠的脑组织进行研究。电镜观察结果显示,3种基因缺陷的小鼠均发生了神经元轴突生长抑制、神经元层和生长锥中MT数量减少;细胞培养和体外迁移分析揭示,3种基因缺陷小鼠的小脑神经元迁移延迟、神经突延长障碍;免疫组织化学结果提示,3种基因缺陷小鼠的海马均出现锥体细胞排列松散,胞体间失去联系;此外,tau-/-、MAP1B-/-缺陷可引起前联合、胼胝体体积明显减小,出现严重的轴突束发育不良,这种改变在tau-/-MAP1B-/-、tau-/-MAP1B+/+小鼠脑组织中更加明显。可见,在中枢神经发育过程中,tau对调控轴突生长和神经元迁移发挥了重要的作用。

2.2 发育脑tau磷酸化的规律及其可能的调控 Tau磷酸化与去磷酸化作用的平衡是维持其功能稳定的重要调控机制。异常高度磷酸化的tau可与正常tau、MAP1、MAP2结合,竞争性抑制后3者与MT的结合;磷酸化作用使tau聚合形成双螺旋细丝,后者进一步磷酸化聚合形成神经纤维缠结(neurofibrillary tangles,NFTs),参与中枢神经系统功能紊乱。可见,tau的正常磷酸化水平在维系中枢的正常功能中发挥着重要作用。

Yu 等[3]对胚胎期15 d(embryonic 15 days,E15d)至出生后24月(postnatal 24 months,P24m)Wistar大鼠脑内总tau、14个位点的磷酸化水平以及蛋白激酶和磷酸脂酶(phosphatase,PP)的活性变化进行研究后发现,在胚胎早期胎鼠脑与人类胎脑组织一样,仅表达最短亚型的tau(0N3R tau352),P5d后开始出现较长亚型,P15d至P1m脑内出现全部tau亚型(0N3R tau352、1N3R tau381、2N3R tau410、0N4R tau383、1N4R tau412、2N4R tau441),而P3 m后胎儿期的tau亚型消失,只表达4R tau。根据发育脑tau磷酸化水平的变化规律可将其14个磷酸化位点分为3组。第1组:胚胎期开始出现高磷酸化水平,并持续至P15d。包括Ser202、Thr212、Thr217、Ser356、Ser404、Ser409。第2组:磷酸化水平自胚胎期逐渐升高至P5d或P15d达到高峰,从P1~3m开始逐渐降低至成年水平。包括Thr181、Ser199、Thr205、Ser214、Ser262、Ser422。第3组:在胚胎期和成年期磷酸化水平一直保持稳定,包括Thr231和Ser396两个位点。其中,第1、2组位点磷酸化水平的变化规律与胚胎、新生鼠早期神经突的生长期一致,提示这些位点的磷酸化可能与神经突的发育有关。

此外,Yu等[3]还对几种主要的蛋白激酶和PP对胚胎及新生鼠时期脑tau磷酸化水平的影响进行了研究,结果显示,糖原合成激酶 3β(glycogen synthase kinase 3β,GSK-3β)的表达在胚胎期与第2组位点的高磷酸化水平一致;细胞周期蛋白依赖性激酶5在胚胎发育期持续增高,并在P15d到达顶点,此高表达持续至P24m;细胞外调节蛋白激酶、JNKs在胚胎发育期表达增多,并分别在P5~15d、P0~15d达到顶峰,其后逐渐下降趋于稳定;蛋白激酶A在胚胎发育期及P5d也呈现升高。蛋白激酶对tau磷酸化作用进行调节,而PP1、PP2A、PP2B和PP5对tau的去磷酸化作用进行调控。该研究发现,除PP1表达水平在整个发育和成熟期都趋于稳定外,PP2A、PP2B和PP5表达水平在发育期呈逐渐升高的趋势,在P15d达到顶峰并稳定于该水平。

可见,发育脑tau存在特殊的磷酸化及调控表现,其可能的调控紊乱,在发育期的多种中枢神经系统疾病尤其是新生儿缺氧缺血性脑病(hypoxia-ischemia encephalopathy,HIE)的病理生理过程中发挥的作用,有待进一步研究。

2.3 发育期脑tau磷酸化和成熟脑tau病理性磷酸化的比较 与发育期脑相比,阿尔茨海默病(Alzheimer's disease,AD)患者脑tau在Ser 202、Thr212、Thr217、Thr231、Ser396、Ser404、Ser422位点磷酸化水平升高;Thr181、Ser199、Thr205、Ser214、Ser262、Ser356、Ser409磷酸化水平接近或低于发育期[3]。正常胚胎期及出生后早期脑内高度磷酸化的位点,与AD中异常高度磷酸化并参与NFTs形成的位点重叠。可见,tau某些位点的高度磷酸化也许是正常脑发育所必需,但在成年期却参与了中枢退化性疾病的发生,机制不明。

Duka等[4]对AD和帕金森症(Parkinson’s disease,PD)、路易氏小体痴呆(dementia with Lewy bodies,DLB)患者脑tau磷酸化水平进行研究后发现,与同龄对照组相比,3种疾病中tau多个位点的磷酸化水平出现增高,见表1。发育脑与神经退行性疾病患者脑tau特定位点磷酸化水平的相关性,为进一步研究不同发育阶段病理情况下脑tau异常修饰提供了新的思路。

此外,Zhong等[5]的研究发现,表达外显子2、10的tau亚型在磷酸化水平增高的情况下形成tau低聚物的能力增强。异常高度磷酸化的tau与4R tau结合的能力高于3R tau,这种结合能力由强及弱依次为:2N4R>1N4R>0N4R,1N4R>1N3R>0N3R[6]。0N3R tau是与异常高度磷酸化的tau结合能力最低的亚型,这可能与发育脑tau(主要以0N3R tau为主)在高磷酸化水平的情况下没有出现异常聚集有关。

3 Tau与新生儿缺氧缺血性脑损伤

HIE是缺氧和脑血流减少所致的胎儿和/或新生儿的脑损伤。目前尚无直接证据表明tau参与HIE的发病,但2013年日本学者发现,室息患儿血清tau水平升高并与患儿临床表现的严重程度呈现显著正相关[7]。这提示,tau的病理性改变可能参与了HIE的发病过程。在中枢退行性变中,tau的病理作用重点体现于NFTs的形成,后者参与了神经元轴突运输障碍等病理过程。胎脑内tau虽然呈现高磷酸化趋势,但目前尚无研究证实HIE患儿脑内出现神经纤维缠结或tau的其它病理性改变。tau的病理作用是否可以独立于神经纤维缠结而存在?

表1 正常成人、同龄组神经退行性疾病及发育脑内tau高磷酸化位点的比较

Hyperphosphorylation sites were shown in the table in AD postmortem frontal cortex (n=5~6) compared with non-diseased controls (n=4~6). Ser202, Thr205, Thr212, Ser235, Ser238, Ser262, Ser356, Ser396, Ser404, Ser409, Ser413, Ser422 sites phosphorylation elevated compared with non-diseased controls (n=7) in PD postmortem frontal cortex or corpus striatum (n=7~9). tau phosphorylation increased in Thr212, Ser214, Thr217, Thr231,Ser238,Ser396,Ser404,Ser422 sites compared with non-diseased controls (n=7~10) in DLB postmortem frontal cortex (n=7~10). tau Thr181,Ser202,Thr205,Thr212,Ser214,Thr217,Ser262,Ser356,Ser404,Ser409,Ser422 sites are hyperphosphorylation in development brain and they are overlapping with adult PD/AD/DLB hyperphosphorylation sites (n=4~6).

与病理性磷酸化的tau不同,NFTs不能竞争性结合MT并使MT稳定性降低[8]。过表达p25的转基因小鼠tau磷酸化作用增强,在未发现神经纤维缠结的情况下,出现细胞骨架紊乱、轴索肿胀,轴浆内的线粒体、溶酶体聚集成团,这些改变与MT功能的丧失一致[9-10]。tau异常引起突触损伤、脱失,在NFTs形成和神经元凋亡之前就已经出现[11]。tau基因缺失可导致AD动物模型的白质束和神经纤维网的轴突球状体形成[12],而营养障碍性神经网轴突球状体为AD的显著特征之一。可见,tau介导的神经毒性并不依赖神经纤维缠结的形成,其病理性磷酸化足以导致神经细胞损伤。

3.1 缺氧缺血与tau病理性修饰 HIE的发病环节之一是缺血所致脑内糖代谢低下。对AD患者的研究中发现[13],O-GlcNAc糖基化参与调节脑内tau磷酸化水平。饥饿小鼠因脑内糖代谢低下,导致细胞内尿苷二磷酸-N-乙酰葡萄糖胺浓度下降,O-GlcNAc糖基化作用降低,进而引起tau磷酸化水平增高。Liu等[14]尸检提取AD患者和对照组额叶皮质,对tau不同位点的磷酸化水平和O-GlcNAc糖基化水平行相关性分析,结果显示:tau磷酸化水平与O-GlcNAc糖基化作用呈负相关。O-GlcNAc糖基化作用下降后AD患者脑tau在Ser199、Ser202、Thr205、Thr212、Ser214、Thr217、Ser262、Ser396、Ser422位点磷酸化水平显著升高;此外,该研究还发现,AD组葡萄糖转运体(glucose transporter,GLUT)1和GLUT3表达水平下降,与tau的O-GlcNAc糖基化水平降低存在相关性。

HIE后机体还存在应激反应。Rissman等[15]研究发现,急性应激后可导致糖皮质激素水平增高、海马GSK-3β活化,同时tau在Thr181、Ser199 、Thr212、Thr231等多个位点出现磷酸化水平升高。该研究还发现,抑制糖皮质激素作用并不能影响tau的磷酸化水平,而敲除转基因小鼠的Ⅰ型肾上腺素释放因子受体,能够抑制GSK-3β活化,降低tau磷酸化水平;敲除2型肾上腺素释放因子受体可使GSK-3β活化明显增多,tau磷酸化作用增强。可见,急性应激后GSK-3β活化调控可能与肾上腺素释放因子受体有关。该受体调控的信号转导机制尚有待进一步研究。

3.2 Tau与髓鞘化之间的关系 髓鞘形成是大脑发育的必经之路,作为绝缘层的髓鞘脂包绕于神经元轴突,保证了轴突的正常快速电传导。少突胶质细胞(oligodendroglia, OL)是形成中枢神经系统髓鞘的细胞,少突胶质细胞前体细胞(oligodendrocyte progenitor cells,OLPs)的受损,并由此导致脑髓鞘化低下是HIE远期行为异常的机制之一。目前的研究认为,tau在OL尤其是OLPs上表达,并参与调控髓鞘化进程。

3.2.1 “Fyn-tau-MT”绑定与OL分化 在髓鞘化过程中,轴突源信号被OL的膜受体识别并激活Fyn,后者调控OL增殖分化及髓鞘碱性蛋白(myelin basic protein, MBP)合成。Fyn调控轴突-OL信号转导的机制,见图1[16]。在此,“Fyn-tau-MT”绑定在OL分化中发挥了重要作用。Klein等[17]发现,具有活性的Fyn与丧失了MT结合能力的突变tau结合,致使OL分化的数量和长度出现明显下降。Reynolds等[1]的研究发现,tau的磷酸化降低了其与Fyn的绑定能力;Leugers等[18]的研究也表明,Ser199/202的异常磷酸化作用削弱了0N3R tau与Fyn SH3结构域的绑定能力。可见,缺氧缺血后tau病理性修饰,可能使“Fyn -tau-MT”绑定能力下降,阻断Fyn下游信号转导途径,导致髓鞘化受损。

Figure 1.The role of Fyn as central integrator and mediator of axon-glia signalling[16]. Axon-derived signals are sensed by oligodendroglial membrane receptors modulate Fyn kinase activity. Upon dephosphorylation of the C-terminus with the conserved regulatory tyrosine residue 531 (Y531), the conformation changes to an open form that is regarded as the active state. Fyn mediates downstream signalling that can be divided into three major pathways: (1) the RhoA/Cdc42/Rac1-dependent pathway modulates actin dynamics and mediates cell survival and morphological differentiation; (2) recruitment of the microtubule cytoskeleton contributes to cell polarisation and may facilitate axon-directed cargo transport; (3) activated Fyn controls localised myelin protein synthesis by affecting mRNA transport, stability, and translational regulation. In summary, these pathways integrate axonal signals to spatiotemporally regulate myelin formation.

Figure 2.The mechanism of tau protein abnormal modified after cerebral hypoxia-ischemia.There are 5 possible pathways in hypoxia-ischemi-related tau protein hyperphosphorylation. (1) Acute stress response. It was arisen from hypoxic-ischemic stimulation and it could activate GSK-3β through corticotropin-releasing factor receptors. It can lead to tau hyperphosphorilized in hippocampus. (2) Glucose low metabolism. GLUTs level decreased after energy depletion in hypoxic-ischemic injury. And then it can reduce O-GlcNAc glycosylation which cause tau protein hyperphsphorylation. (3) Microglial cell activation. Microglial cells could be activated by ATP, an important neurotransmmiter which can release from dead cell after hypoxic-ischemic damage. ATP works as a microglial cell activator which can induce cytokine overexpression. (4) Glutamate metabolism. Glutamate released from dead neurons and oligodendrocyte progenitor cells. It causes intracellular Ca2+ overload that promotes GSK-3β activity and leads to tau hyperphosphorylation by glutamate receptors. In addition, glutamate can cause Zn2+ release, it inhibits PP2A activity that should result in tau protein dephosphorylation then causes tau protein hyperphosphorylation; (5) Fyn overexpression. Fyn expression elevated after hypoxic-ischemic damage and it takes part in tyrosine site phosphorylation in tau protein. Though the direct relationship between hypoxic-ischemic encephalopathy is absent, these potential mechanisms mentioned above should be involved in hypoxia-ischemia-related tau protein abnormal modification. Consequently, neuron lost, oligodendrocyte differentiation inhibition, MBP synthesis decreasing, mitochondria and axon dysfunction will occur after tau abnormal modification.

3.2.2 Tau与MBP合成 MBP是成熟中枢神经系统髓鞘的主要蛋白质。MBP的mRNA包含于RNA转运颗粒内,通过RNA异质核糖核蛋白A2的3′UTR序列与tau结合,以MT为运输轨道被转运至OL的质膜,在Fyn的调控下合成MBP。tau的病理性磷酸化会导致MT稳定性下降,影响MBP的RNA转运颗粒运输。

在此,Fyn活化是髓鞘化的中心环节,但Fyn的过度活化也具有毒性作用。在过度表达Fyn的小鼠上复制HIE模型后,发现小鼠脑损伤加重、死亡率增加[19]。Fyn的高表达可导致tau在Ty18位点出现磷酸化水平增高,拮抗Fyn的活性能减轻AD患者脑内tau的病理性磷酸化作用[20]。可见,Fyn的适度活化是正常中枢髓鞘化的关键。

3.3 HIE后脑内炎症反应与tau病理性修饰 感染/炎症反应在HIE中发挥重要作用。HIE后脑内的炎症反应主要由脑内阿米巴样小胶质细胞(amoeboid microglial cell,AMC)介导发生[21]。缺氧后脑组织中游离的三磷酸腺苷增多[22],可能通过调节P2X4受体诱导AMC活化[23],后者进一步释放炎症因子,包括白介素1β(interleukin 1β,IL-1β)、肿瘤坏死因子α(tumor necrosis factor,TNF-α)等。Munoz等[24]研究显示TNF-α、IL-1β等可活化神经元上丝裂原活化蛋白激酶(mitogen- activated protein kinase,MAPK)信号途径,使tau磷酸化作用增强。Ghosh等[25]对转基因小鼠(3×TgAD/IL-1βXAT基因表达1、3 月后)进行研究后发现,IL-1β释放和小胶质细胞(microglial cells,MCs)活化可相互促进,并促使海马区域p38 MAPK、GSK-3β活化,导致tau异常过度磷酸化。

3.4 谷氨酸代谢障碍与tau磷酸化的双向作用 缺氧性脑损伤发生后,脑内谷氨酸释放增多。Sun等[26]将培养的海马脑片和原代神经元暴露在谷氨酸中,tau在Thr205、Thr231、Ser396和Ser404位点出现高度磷酸化。异常过度磷酸化的tau可引起线粒体功能障碍,兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)功能受损,使谷氨酸在突触部位的清除能力降低并逆向转运,导致细胞外谷氨酸大量聚集,谷氨酸受体持续活化。谷氨酸受体的过度活化介导Ca2 +内流,细胞内Ca2 +超载,进而激活GSK-3β,钙离子/ 钙调节蛋白依赖性蛋白激酶Ⅱ(Ca/calmodulin- dependent protein kinases or CaM kinases Ⅱ,CaMK Ⅱ),MAPK等途径引起 tau的过度磷酸化。此外[26-27],突触的谷氨酸释放伴随锌(Zinc, Zn2 +)释放,Zn2 +能够抑制PP2A活性,从而进一步促进tau异常高度磷酸化(HIE后,tau病理性修饰及其介导脑损伤的机制见图2)。

3.5 HIE后血清tau的改变与脑损伤的关系 Lilianga等[28]对创伤后大鼠血清tau表达的研究表明,血清tau水平与脑损伤的程度呈正相关。Tunc等[29]研究分娩方式对脐带血内tau水平的影响时发现,胎儿缺氧时脑tau可释放至血清,tau可作为反映胎儿缺氧情况的指标。Takahashi等[7]将P0 d、P3 d、P7 d窒息患儿血清与同龄正常新生儿血清中tau水平进行比较后发现,P3 d、P7 d时窒息患儿血清tau水平明显高于正常对照组,且血清tau水平与临床表现的严重程度呈正相关。

4 展望

随着新生儿医学的发展,早产儿的存活率明显提高,但是幸存早产儿常合并脑损伤,可引起痉挛性脑瘫、认知及视听障碍等远期行为异常。学习记忆的生理和病理过程与海马多种蛋白的表达,以及正常的髓鞘化具有密切关系,其中tau是学习记忆的重要标记性蛋白。目前的研究发现,急性脑缺氧缺血后MC活化、炎症因子、谷氨酸释放增多,以及葡萄糖摄取/代谢障碍、急性应激等病理情况均可诱导脑tau的病理性修饰,后者在神经元凋亡、OL分化障碍和突触功能退化、突触丢失等病理改变中发挥重要作用。

然而,tau可以发生磷酸化的位点很多,哪些位点的病理性磷酸化与HIE的发病相关,仍然不清。虽有研究表明[7],血清tau水平与窒息患儿临床表现的严重程度呈正相关,但血清tau要作为新生儿HIBD严重程度的评价指标,要求其具有特异性及稳定性。而临床中新生儿、尤其是早产儿HIE的发生多伴随有病理性黄疸、呼吸窘迫综合征和新生儿肺炎等合并症,这是否会影响血清tau水平?血清tau在HIE脑损伤中的特异性监测作用,尚需要大样本的研究进行验证,以及对对照组进行严格地筛选方能得到可信的数据。

综上所述,脑tau的病理性修饰与HIE的发生、发展密切相关。虽然相关研究面临许多困难和挑战,但是研究tau在HIE中的可能作用及其机制,探讨缺氧缺血后血清tau与脑tau间的可能关系,有望为HIE的防治提供新的思路。

[1] Reynolds CH, Garwood CJ, Wray S,et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases[J]. J Biol Chem, 2008, 283(26):18177-18186.

[2] Takei Y, Teng J, Harada A, et al. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes[J]. J Cell Biol, 2000, 150(5):989-1000.

[3] Yu Y, Run XQ, Liang ZH, et al. Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases[J]. J Neurochem, 2009, 108(6):1480-1494.

[4] Duka V, Lee JH, Credle J, et al. Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases[J]. PLoS One, 2013, 8(9):e75025.

[5] Zhong Q, Congdon EE, Nagaraja HN, et al. tau isoform composition influences rate and extent of filament formation[J]. J Biol Chem, 2012, 287(24):20711-20719.

[6] Alonso AD, Zaidi T, Novak M, et al. Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau andinvitrophosphorylation into the disease-like protein[J]. J Biol Chem, 2001, 276(41):37967-37973.

[7] Takahashi K, Hasegawa S, Maeba S,et al. Serum tau protein level serves as a predictive factor for neurological prognosis in neonatal asphyxia[J]. Brain Dev, 2014, 36(8):670-675.

[8] Gong CX, Liu F. Hyperphosphorylation-induced tau oligomers[J]. Front Neurol, 2013, 4:112.

[9] Shimura H, Schwartz D, Gygi SP, et al. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival[J]. J Biol Chem, 2004, 279(6):4869-4876.

[10]Ahlijanian MK, Barrezueta NX, Williams RD, et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5[J]. Proc Natl Acad Sci U S A, 2000, 97(6):2910-2915.

[11]Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model[J]. Neuron, 2007, 53(3):337-351.

[12]Dawson HN, Cantillana V, Jansen M, et al. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease[J]. Neuroscience, 2010, 169(1)516-531.

[13]Liu F, Iqbal K, Grundke-Iqbal I, et al. O-GlcNAcylation regulates phosphorylation of tau:a mechanism involved in Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10804 -10809.

[14]Liu Y, Liu F, Iqbal K, et al. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer’s disease[J]. FEBS Lett, 2008, 582(2):359-364.

[15]Rissman RA, Lee KF, Vale W, et al. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation[J]. J Neurosci, 2007, 27(24):6552-6562.

[16]Krämer-Albers EM, White R. From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase[J]. Cell Mol Life Sci, 2011, 68 (12):2003-2012.

[17]Klein C, Kramer EM, Cardine AM, et al. Process outgrowth of oligodendrocytes is promoted by interaction of Fyn kinase with the cytoskeletal protein tau[J]. J Neurosci , 2002, 22(3): 698-707.

[18]Leugers CJ, Koh JY, Hong W, et al. tau in MAPK activation[J]. Front Neurol, 2013, 4:161.

[19]Knox R, Zhao C, Miguel-Perez D, et al. Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression[J]. Neurobiol Dis, 2013, 51:113-119.

[20]Nygaard HB, van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer’s disease[J]. Alzheimer’s Res Ther, 2014, 6(1):8.

[21]Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells[J]. Prog Neurobiol, 2009, 87(4):264-280.

[22]Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy[J]. Curr Neuropharmacol, 2009, 7(3):160-179.

[23]Li F, Wang L, Li JW, et al. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4[J]. BMC Neuroscience, 2011, 12:111.

[24]Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease [J]. Neuropharmacology, 2010, 58(3):561-568.

[25]Ghosh S, Wu MD, Shaftel SS, et al. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model[J]. J Neurosci, 2013, 33(11):5053-5064.

[26]Sun XY, Wei YP, Xiong Y, et al. Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A)[J]. J Biol Chem, 2012, 287(14):11174- 11182.

[27]Xiong Y, Jing XP, Zhou XW, et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation [J]. Neurobiol Aging, 2013, 34(3):754-756.

[28]Lilianga PC, Lianga CL, Lua K, et al. Relationship between injury severity and serum tau protein levels in traumatic brain injured rats[J]. Resuscitation, 2010, 81(9):1205-1208.

[29]Tunc T, Karaoglu A, Cayci T, et al. The relation between delivery type and tau protein levels in cord blood[J]. Pediatr Int, 2010, 52(6):872-875.

Abnormally modified tau and hypoxic-ischemic brain damage

XIAO Jie, LI Fan

(DepartmentofPathologyandPathophysiology,BasicMedicalCollege,KunmingMedicalUniversity,Kunming650500,China.E-mail:leefan623@sina.com)

Tau is the most abundant microtubule-associated protein in the brain. If tau protein lost the normal function, the toxic effect should be showed and plays an important role in various central nervous system lesions. Hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality in the neonatal period and it is mainly characterized by neurological deficits such as cognitive limitations. However, the mechanism still needs further study, and the underlying relationship between tau protein and HIE lacks direct evidence. Some recent clinical study reported that tau protein expression elevated in the serum of asphyxia children and had a high correlation with behavior deficient. In this review, we focus on 3 key points to provide new insights to understand the tau protein-related pathogenesis of HIE as followed: (1) tau protein and its phosphorylation change during central nervous system development; (2) comparison of tau protein expression in developing brain and adult brain under some neurological disorders; (3) potential pathological change of tau in HIE related pathological conditions, such as dysmyelination, inflammation response and glutamate metabolism.

蛋白质, tau; 缺氧缺血性脑损伤; 髓鞘形成障碍; 谷氨酸代谢

Protein, tau; Hypoxic-ischemic brain damage; Dysmyelination; Glutamate metabolism

1000- 4718(2015)01- 0181- 07

2014- 06- 09

2014- 10- 23

国家自然科学基金资助项目(No. 81200939; No. 31260242); 云南自然科学基金资助项目(No. 2011FB060)

△通讯作者 Tel: 0871-659228958; E-mail: leefan623@sina.com

R363

A

10.3969/j.issn.1000- 4718.2015.01.034

猜你喜欢

髓鞘病理性脑损伤
听觉神经系统中的髓鞘相关病理和可塑性机制研究进展
髓鞘探针在脱髓鞘疾病的应用进展
Quintero分期、CHOP分级与TTTS脑损伤的相关性对比分析
股骨中上段慢性骨髓炎合并病理性骨折患者术中顽固性低血压1例
小针刀疗法在病理性疼痛中的研究进展
磷脂酶Cε1在1型糖尿病大鼠病理性神经痛中的作用初探
病理性醉酒的病人在发病期间杀人,构成犯罪吗
MRI定量评估胎儿髓鞘研究进展
脑损伤 与其逃避不如面对
人从39岁开始衰老