APP下载

MicroRNA在肝纤维化中的研究进展*

2015-03-21张春燕,田亚平

国际检验医学杂志 2015年24期
关键词:转化生长因子肝纤维化



MicroRNA在肝纤维化中的研究进展*

*基金项目:国家自然科学基金青年基金(81501821)。

张春燕 综述,田亚平 审校

(中国人民解放军总医院生化科/转化医学中心,北京 100039)

关键词:肝纤维化;肝星状细胞;microRNA;转化生长因子-β

肝纤维化是肝内弥漫性细胞外基质(ECM) 过度沉积的病理过程,是多数慢性肝病发展至最后的共同通路,又是肝病进一步恶化的前期病变[1]。目前尚缺乏肝纤维化有效的治疗,是因为对肝纤维化发生、发展的机制并不完全理解。MicroRNA(miRNA)是一种长度约为22个核苷酸的非编码单链RNA,在转录后水平上调节目的基因的表达[2]。越来越多的研究表明,miRNAs通过对靶基因的调控,参与肝纤维化过程[3-5]。本文就参与肝纤维化发生、发展过程的miRNAs及其作用机制作一综述。

1肝纤维化发病机制

肝纤维化是多种原因引起的慢性肝损害所致的病理改变,包括慢性乙肝病毒感染、酒精、肥胖、自身免疫性肝炎、寄生虫病、代谢紊乱、毒物药物导致肝损伤等[6]。在肝纤维化进展中,炎症和肝损伤导致了胶原蛋白沉积,影响正常肝功能发挥作用[7]。研究表明,肝星状细胞(HSC)的激活是肝纤维化的中心环节,HSC占肝脏细胞的5%~ 8%[8],却是导致肝纤维化形成的主要原因。Mederacke等[9]在新型LratCre转基因小鼠中标记了99%HSC,揭示了HSC在模型中的成纤维化、胆汁淤积及脂肪肝形成的原因中占82%~96%。正常情况下HSC处于静止状态,具有储脂、储维生素A的功能,一旦受到成纤维因素刺激,便活化出现肌成纤维母细胞样表型[10]。同时,HSC的活化与ECM的合成和沉积显著增加密切相关,包括α-平滑肌机动蛋白(α-SMA)、胶原蛋白、组织金属蛋白酶的抑制剂(TIMP1)和肌间线蛋白的高表达,细胞因子例如成纤维细胞生长因子(FGF)、白介素6(IL-6)、细胞黏附分子(ICAM-1) 和单核细胞趋化蛋白1(MCP-1)的释放[11- 12]。

目前认为,肝纤维化的分子发病机制主要有三个[6,13]:第一,肝细胞间或肝细胞与基质间交互作用的改变在肝纤维化过程中发挥重要作用;第二,氧化应激,慢性乙肝病毒感染及嗜酒增加活性氧(ROS)导致肝细胞损伤。氧化应激可以增加线粒体的通透性引起肝细胞的坏死或凋亡。而ROS可直接影响HSC和成纤维细胞的功能。ROS通过活化信号转导通路及转录因子(c-Jun氨基末端激酶(JNK),激活蛋白1(AP-1)及NF-κB上调肝纤维化相关基因(COL1A1、COL1A2、MCP1和TIMP1)的表达;第三,基质金属蛋白酶(MMP)和金属蛋白酶组织抑制因子(TIMP)之间的平衡是细胞外基质动态稳定的重要基础。肝纤维化的早期二者之间的比例关系就已经失衡。而活化的HSC可分泌MMP。研究显示,肝损伤、炎症、细胞凋亡、肝细胞再生过程中miRNAs表达谱发生显著变化,miRNAs通过参与病毒致病过程、氧化应激、细胞因子分泌及肝细胞脂类代谢,参与肝纤维化过程[14]。

2肝纤维化相关miRNAs

MiRNA是一种非编码单链RNA,在进化上高度保守。miRNAs可通过直接降解靶基因mRNA或是抑制其翻译而发挥对目的基因的下调作用。因此,miRNAs既可通过下调促肝纤因子而发挥抑制肝纤维化的作用,也可通过下调肝纤抑制因子而发挥促肝纤维化作用。目前研究表明,miRNAs参与并调节肝纤维化进程[15-17],可作为肝纤维化的生物标志物[18]。

Murakami等[19]在人和鼠中分别筛选了肝纤维化过程中变化的miRNAs,筛选出11个差异miRNAs与肝纤维化进程密切相关的miRNAs(let-7e,miR-125-5p,miR-199a-5p,miR-199b,miR-199b*,miR-200a,miR-200b,miR-31,miR-34a,miR-497和miR-802),并找到4个人和鼠共同表达的miRNAs(miR-199a,miR-199a*,miR-200a和miR-200b),能够促进肝纤维化进程。Li等[20]在小鼠CCl4诱导肝纤维化模型中筛选到10个上调miRNAs(miR-34b,miR-34c,miR-34a,miR-221,miR-146b,miR-214,miR-199a-5p,miR-199a-3p,miR-223和miR-324-5p)和7个下调miRNAs(miR-378,miR-193,miR-878等)[18]。其中,miR-34家族与脂肪代谢相关。

另有科学家在心肌纤维化、肾纤维化和肝纤维化过程中筛选出共有miRNAs,对纤维化有调控作用的,目前报道的最多的是miR-29家族。胆道结扎诱导肝纤维化小鼠模型中,miR-29a/b/c显著下调,同时,低水平miR-29a提示肝纤维化进展[21]。Zhang等[22]的研究发现,miR-29b可通过下调热休克蛋白47(HSP47)和赖氨酰氧化酶的表达而抑制HSC中胶原蛋白的成熟,从而抑制肝纤维化的发生和发展。Kwiecinski等[23]发现miR-29b可通过直接抑制促肝纤生长因子[血小板源生长因子C和胰岛素样生长因子1(IGF-1)]的表达而对机体起保护作用。同时,miR-29b也可通过表观遗传学调控的方式抑制肝纤维化的进展[24]。

3MiRNAs参与HSC活化、增殖和凋亡

HSC是肝纤维化的主要效应细胞,是Ⅰ型胶原沉积的主要来源,其激活因素主要包括病毒感染、肥胖和饮酒。HSC活化后分泌成纤维因子,包括转化生长因子-β(TGF-β)、纤维胶原蛋白、纤连蛋白和层粘连蛋白[25]。

最新研究表明,miRNAs参与HSC的分化。Chen等[26]比较了静息状态下人HSC和HSC激活后miRNAs表达差异,发现HSC激活后31个miRNAs表达有显著性差异,包括17个miRNAs(miR-345-5p,miR-152,miR-199a-5p,miR-218,miR-125b-5p,miR-214,miR-34c,miR-34b,miR-199a-3p,miR-425,miR-221,miR-301a,miR-222,miR-193,miR-31,miR-143和miR-145)表达上调和14个miRNAs(miR-101a,miR-335,miR -877,miR -139-5p,miR-150,miR-126*,miR-192,miR-450a,miR-497,miR-338,miR-10a-5p,miR-378*,miR-195和miR-126) 表达下调。胆道结扎小鼠模型HSC活化后miR-150,miR-187,miR-194和miR-207显著下调,Let7家族显著上调,体外实验在人HSC LX-2细胞中高表达miR-150和miR-194能降低Ⅰ型胶原和α-SMA表达,抑制HSC活化[27]。Zhang等[28]的研究发现,miR-21可与程序性细胞死亡蛋白4(PDCD4)和活化蛋白1(AP1)共同形成一个自调节的反馈环路,激活HSC,是一个重要的肝纤始动因素。Hassan等[29]在小鼠肝纤维化模型中使用姜黄素抗炎发现miR-199和miR-200b能够促进HSC活化和肝纤维化进展。Ogawa等[30]提出并在人和鼠中验证了miR-221和miR-222作为HSC活化的生物标志物。Ge等[31]通过体内和体外试验验证了miR-19b通过靶定生长因子受体结合蛋白(GRB2)抑制HSC的增殖,从而抑制肝纤维化进展。Xiao等[32]发现miR-200b能够显著增强LX-2细胞的增殖和迁移。基因测序结果表明miR-15/16家族与HSC活化过程中抗凋亡细胞通路密切相关,其miRNA模拟物能够抑制Bcl-2和细胞凋亡[33]。

4MiRNAs调控肝纤维化相关信号通路

肝纤维化过程受多种信号通路调控,主要为TGF-β/Smad、PI3K/Akt、p38 MAPK和Wnt/β-catenin信号通路。TGF-β参与细胞分化、生长、凋亡、迁移、ECM沉积及ECM蛋白的生成和降解,是调控机体各个器官纤维化的核心信号通路[34-36]。TGF-β/Smad可以抑制正常肝细胞的增殖,激发肝星状细胞的活化,促进ECM的生成沉积,另一方面,TGF-β/Smad信号通路可以导致细胞MMPs和上调金属蛋白酶组织抑制剂(tissue inhibitor of metalloproteinase TIMPs),从而导致ECM低降解。在组织纤维化过程中,TGF-β/Smad信号通路的激活又可以促进一些抗纤维化因子的表达,比如血管生长因子(VEGF)、IGF-1和整合素等。因此肝纤维化进程中miRNAs对TGF-β/Smad信号通路的调控成为近年的研究热点。

研究显示,miR-200在肝星状细胞中过表达可以抑制其靶基因Keap1的表达[37],从而促进Nrf2的核迁移,进而激活依赖Nrf2的NQO1表达。而Nrf2的激活可以阻止TGF-β/Smad信号通路的激活,减慢肝纤维化进程。Zhang等[38]的研究显示二吲哚甲烷(DIM)诱导的miR-21低表达可以阻止TGF-β信号通路的激活,从而减缓肝纤维化的进程。Li等[39]的研究显示miR-483的过表达通过抑制血小板生长因子和金属蛋白酶组织抑制因子调控TGF-β信号通路,进而影响肝纤维化发展进程。Tu等[40]的研究表明miR-101能够靶定TβRI和KLF6,抑制TGF-β信号通路,抑制肝纤维化进程。小鼠CCl4诱导肝纤维化模型中,miR-101能够促进活化的HSC恢复到静止期,是逆转肝纤维化的潜在靶点之一。Roderburg等[41]的研究揭示了miR-133a通过调控TGF-β/Smad信号通路,对肝纤维化发挥抑制作用。He等[42]的研究结果表明miR-146a过表达后抑制TGF-β诱导的HSC增殖和α-SMA的表达,降低Smad4表达水平,从而抑制肝纤维化进程。

Li等[43]的研究发现,miR-33a可通过活化PI3K/Akt信号通路而促进肝纤维化的进展。Maubach等[44]发现HSC细胞(HSC-2)激活后与静息期相比,16个miRNAs(miR-125b,miR-143,miR-214,miR-221等)上调,26个miRNAs(miR-122a,miR-126,miR-146a, miR-195,miR-30b等)下调,涉及MAPK,ERK/MAPK,PTEN和TGF-β等多种信号通路。其中,miR-146a过表达后抑制NF-κB 信号通路关键因子IRAK1和TRAF6 的表达,降低p38 MAPK信号通路关键因子TIMP-3表达。Tsukamoto等[45]的研究显示体外激活HSC后Wnt/β-catenin信号通路激活,包括Wnt3a、Wnt10b、FzdR-1/2、LRP6、核内β-catenin和TCF的表达上调。Sun等[46]发现Wnt/β-catenin和TGF-β信号通路同为miR-200a下游靶基因,miR-200a通过这两个信号通路共同作用,抑制肝纤维化进程。

5小结与展望

目前,越来越多的证据表明miRNAs参与调节肝纤维化进展,HSC活化和细胞凋亡以及相关信号通路。对肝纤维化发生、发展的机制的深入理解,将为肝纤维化有效的诊断和治疗提供靶点。令人高兴的是,体外人工合成miRNA的方法和体系已经建立,可以成功地生产抗TGF-β的miRNAs,实现体外抗肝纤维化进程[47]。因此,对肝纤维化相关miRNAs作用机制和功能的理解将对未来的发展起至关重要的作用,预计miRNAs将参与肝纤维化治疗策略,成为肝纤维化预警和诊断的生物标志物。

参考文献

[1]Brenner DA.Molecular pathogenesis of liver fibrosis [J].Trans Am Clin Climatol Assoc,2009,120(36):1-8.

[2]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.

[3]Zheng JJ,Lin Z,Dong PH,et al.Activation of hepatic stellate cells is suppressed by microRNA-150[J].Int J Mol Med,2013,32(1):17-24.

[4]Starkey Lewis PJ,Dear J,Platt V,et al.Circulating microRNAs as potential markers of human drug-induced liver injury[J].Hepatology,2011,54(5):1767-1776.

[5]Hsu SH,Ghoshal K.MicroRNAs in liver health and disease[J].Curr Pathobiol Rep,2013,1(1):53-62.

[6]Mormone E,George J,Nieto N.Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches[J].Chem Biol Interact,2011,193(3):225-231.

[7]Kong XN,Horiguchi N,Mori M,et al.Cytokines and STATs in liver fibrosis[J].Front Physiol,2012,3(1):25-28.

[8]Tacke F,Weiskirchen R.Update on hepatic stellate cells:pathogenic role in liver fibrosis and novel isolation techniques[J].Expert Rev Gastroenterol Hepatol,2012,6(1):67-80.

[9]Mederacke I,hsu CC,troeger JS,et al.Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology [J].Nat Commun,2013,4(2):8-23.

[10]Eng FJ,Friedman SL,Fibrogenesis I.New insights into hepatic stellate cell activation:the simple becomes complex[J].Am J Physiol Gastrointest Liver Physiol,2000,279(1):7-11.

[11]Fallowfield JA.Therapeutic targets in liver fibrosis[J].Am J Physiol Gastrointest Liver Physiol,2011,300(5):709-715.

[12]Forbes SJ,Parola M.Liver fibrogenic cells[J].Best Pract Res Clin Gastroenterol,2011,25(2):207-217.

[13]Hernanandez-gev V,Friedman SL.Pathogenesis of liver fibrosis [J].Annu Rev Pathol,2011,6(4):25-56.

[14]Shah N,Nelson JE,Kowdley KV.MicroRNAs in liver disease:bench to bedside[J].J Clin Exp Hepatol,2013,3(3):231-242.

[15]Reuter S,Gupta SC,Chaturvedi MM.Oxidative stress,inflammation,and cancer How are they linked[J].Free Radical Biology and Medicine,2010,49(11):1603-1616.

[16]Pheasant M,Mattick JS.Raising the estimate of functional human sequences[J].Genome Res,2007,17(9):1245-1253.

[17]Soifer HS,Rossi JJ,Saetrom P.MicroRNAs in disease and potential therapeutic applications[J].Molecular Therapy,2007,15(12):2070-2079.

[18]Roderburg C,Luedde T.Circulating microRNAs as markers of liver inflammation,fibrosis and cancer[J].J Hepatol,2014,61(6):1434-1437.

[19]Murakami Y,Toyoda H,Tanaka M,et al.The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families[J].PLoS One,2011,6(1):e16081.

[20]Li WQ,Chen C,Xu MD,et al.The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats[J].FEBS J,2011,278(9):1522-1532.

[21]Roderburg C,Urban GW,Bettermann K,et al.Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J].Hepatology,2011,53(1):209-218.

[22]Zhang Y,Ghazwani M,Li J,et al.MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase[J].Biochem Biophys Res Commun,2014,446(4):940-944.

[23]Kwiecinski M,Elfimova N,Noetel A,et al.Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29[J].Labor Invest,2012,92(7):978-987.

[24]Zheng J,Wu C,Lin Z,et al.Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation--a novel mechanism suppressing liver fibrosis[J].FEBS J,2014,281(1):88-103.

[25]Friedman SL.Hepatic stellate cells:protean,multifunctional,and enigmatic cells of the liver[J].Physiol Rev,2008,88(1):125-172.

[26]Chen C,Wu CQ,Zhang ZQ,et al.Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation[J].Exp Cell Res,2011,317(12):1714-1725.

[27]Venugopal SK,Jiang J,Kim TH,et al.Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells,and their overexpression causes decreased stellate cell activation[J].Am J Physiol Gastrointest Liver Physiol,2010,298(1):G101-G106.

[28]Zhang ZP,Zha YH,Hu W,et al.The autoregulatory feedback loop of MicroRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development[J].J Biol Chem,2013,288(52):37082-37093.

[29]Hassan ZK,Al-Olayan EM.Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis[J].Asian Pacific Journal of Cancer Prevention,2012,13(11):5405-5408.

[30]Ogawa T,Enomoto M,Fujii H,et al.MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis[J].Gut,2012,61(11):1600-1609.

[31]Ge SF,Xie JP,Liu F,et al.MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol[J].J Cell Biochem,2015,116(11):2455-2464.

[32]Xiao Y,Wang J,Chen Y,et al.Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling[J].Cell Signal,2014,26(5):925-932.

[33]Guo CJ,Pan Q,Li DG,et al.miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell:an essential role for apoptosis[J].J Hepatol,2009,50(4):766-778.

[34]Huang W,Li L,Tian X,et al.Astragalus and paeoniae radix rubra extract inhibits liver fibrosis by modulating the transforming growth factorbeta/Smad pathway in rats[J].Mol Med Rep,2015,11(2):805-814.

[35]Porte J,Jenkins G.Assessment of the effect of potential antifibrotic compounds on total and alphaVbeta6 integrin-mediated TGF-beta activation[J].Pharmacol Res Perspect,2014,2(4):e00030.

[36]Crespo I,San-Miguel B,Fernandez A,et al.Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice[J].Trans Res,2015,165(2):346-357.

[37]Yang JJ,Tao H,Hu W,et al.MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis[J].Cell Signal,2014,26(11):2381-2389.

[38]Zhang ZP,Gao ZF,Hu W,et al.3,3 `-Diindolylmethane ameliorates experimental hepatic fibrosis via inhibiting miR-21 expression[J].Br J Pharmacol,2013,170(3):649-660.

[39]Li FY,Ma N,Zhao RQ,et al.Overexpression of miR-483-5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-beta stimulated HSCs in transgenic mice[J].J Cell Mol Med,2014,18(6):966-974.

[40]Tu X,Zhang H,Zhang J,et al.MicroRNA-101 suppresses liver fibrosis by targeting the TGFbeta signalling pathway[J].J Pathol,2014,234(1):46-59.

[41]Roderburg C,Luedde M,Cardenas DV,et al.miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J].J Hepatol,2013,58(4):736-742.

[42]He Y,Huang C,Sun X,et al.MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4[J].Cell Signal,2012,24(10):1923-1930.

[43]Li ZJ.Ou-yang PH,Han XP.Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells[J].Cell Signal,2014,26(1):141-148.

[44]Maubach G,Lim MC,Chen JM,et al.miRNA studies in in vitro and in vivo activated hepatic stellate cells[J].World J Gast,2011,17(22):2748-2773.

[45]Tsukamoto H,She HY,Cheng J,et al.Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis[J].Hepatology,2006,44(4/1):227A.

[46]Sun X,He Y,Ma TT,et al.Participation of miR-200a in TGF-beta1-mediated hepatic stellate cell activation[J].Mol Cell Biochem,2014,388(1/2):11-23.

[47]Chang Y,Jiang HJ,Sun XM,et al.Hepatic stellate Cell-Specific gene silencing induced by an artificial MicroRNA for antifibrosis in vitro[J].Dig Dis Sci,2010,55(3):642-653.

·综述·

通讯作者

收稿日期:(2015-08-16)

文献标识码:

DOI:10.3969/j.issn.1673-4130.2015.24.039A

文章编号:1673-4130(2015)24-3601-04

作者简介:张春燕,女,检验技师,主要从事分子诊断学工作。 王娟,女,主治医师,主要从事分子生物学研究。△,E-mail:haoxkg@fmmu.edu.cn。

猜你喜欢

转化生长因子肝纤维化
TGF—β与器官纤维化的研究进展
戊酸雌二醇联合醋酸甲羟孕酮预防人流术后宫腔粘连的效果研究
纤维蛋白溶解系统和转化生长因子—1在子宫全切除术后腹腔粘连发病机制中的作用
NF—κB信号通路抗肝纤维化的研究进展
肝纤维化无创诊断的研究现状
扶正化瘀制剂抗肝纤维化和治疗慢性肝病的临床疗效
扶正化瘀方抗肝纤维化的主要作用机制与效应物质
中西医结合抗肝纤维化的研究思路与方法
骨髓间充质干细胞移植联合吡菲尼酮治疗肺间质纤维化的研究
肝纤维化早期诊断进展