APP下载

大鼠GLUT3启动子的克隆及其缺糖调控活性的测定*

2011-11-20蒋广义郑传宜李军亮许新科郑眉光李方成

中国病理生理杂志 2011年11期
关键词:萤光报告基因低糖

蒋广义, 郑传宜, 余 舰, 李军亮, 许新科, 郑眉光, 李方成△

(1中山大学孙逸仙纪念医院神经外科,广东 广州 510120;2海南医学院附属医院神经外科,海南 海口 570125)

大鼠GLUT3启动子的克隆及其缺糖调控活性的测定*

蒋广义1, 郑传宜2, 余 舰1, 李军亮1, 许新科1, 郑眉光1, 李方成1△

(1中山大学孙逸仙纪念医院神经外科,广东 广州 510120;2海南医学院附属医院神经外科,海南 海口 570125)

目的构建葡萄糖转运体3(GLUT3)启动子的报告基因,并在正常和缺糖情况下检测其转录活性。方法使用生物信息学软件预测了GLUT3的启动子序列,长度1 292 bp,包含第1个外显子,通过PCR及双酶切方法,从大鼠全血基因组DNA中获得GLUT3基因编码序列,包含GLUT3启动子序列,然后克隆到报告基因pGL3-Basic载体上,构建GLUT3启动子的报告基因;用脂质体转染法将pGL3-GLUT3与胸腺嘧啶脱氧核苷激酶(pRL-TK)共转染入PC12细胞中,以pRL-TK载体作内参照,分别给予正常和缺糖培养,采用双萤光素酶报告系统评估GLUT3启动子的活性。结果经PCR方法扩增出GLUT3启动子序列,测序与GenBank序列一致;转染后检测显示,该pGL3-GLUT3明显具有转录活性,而且在缺糖24 h情况下其双萤光素酶活性有明显升高。结论成功构建出GLUT3启动子报告基因,pGL3-GLUT3表现出很好的缺糖诱导活性,缺糖24 h是研究pGL3-GLUT3在缺糖情况下转录调控很有意义的时间点。

基因,GLUT3; 启动子; 缺糖; 荧光素酶报告基因; 转录调控

葡萄糖转运体3(glucose transporter type 3,GLUT3)是葡萄糖转运体家族中的一员,主要表达在神经细胞上,对葡萄糖分子有高亲合性,是神经细胞主要的葡萄糖转运体。它主要负责把葡萄糖从细胞间质转运入神经细胞内[1,2]。对于以葡萄糖为主要能源底物的神经元而言,GLUT3就像一个总电闸,其功能的重要性是不言而喻的。GLUT3的表达受多种因素的调控,缺氧缺糖、局限性脑缺血、癫痫发作和慢性低血糖均可以引起GLUT3蛋白的增高,通过GLUT3蛋白的合成调节而增加葡萄糖转运,进而满足细胞的有氧氧化[3-6]。不过参与这种调节的转录机制还不是十分明确。我们应用生物信息学方法对大鼠GLUT3基因5’侧翼区序列进行分析,推测大鼠GLUT3基因启动子可能的序列。PCR扩增启动子片段,构建成双萤光素酶报告基因载体pGL3-GLUT3,并在PC12细胞内检测其在正常培养和缺糖情况下的活性表达。PC12细胞是大鼠肾上腺嗜铬细胞瘤细胞,与神经元有很大相似性[7]。本实验在研究神经元之前,先研究缺糖状态下PC12细胞GLUT3的激活转录调控机制。

材 料 和 方 法

1材料

主要试剂 SD大鼠(中山大学医学院实验动物中心);基因组DNA提取试剂盒(上海申能博彩公司);PCR反应试剂盒、DNA快速纯化回收试剂盒、内切酶KpnI、内切酶XhoI及T4 DNA连接酶(TaKaRa);脱氧核糖核酸酶I、高纯度无内毒素质粒提取试剂盒(Tiangen);pGL3-Basic载体,内参照pRL-TK(胸腺嘧啶脱氧核苷激酶,thymidine kinase)以及双萤光素酶报告基因检测系统(Promega);菌株DH5α、高糖(4 500 mg/L)、低糖(1 000 mg/L)、无糖(0 mg/L)DMEM培养基(广州威佳公司);胎牛血清(Gibco);脂质体转染试剂Lipofectamine 2000和无血清培养基Opti-MEM(Invitrogen);BD Monolight 3010 luminometer (BD Biosciences)。

2GLUT3启动子报告基因的构建

根据大鼠GLUT3基因序列(NCBI RefSeq: NC-005103.2 / 159210116-159221169), 取其mRNA序列(NCBI GenBank: NM-017102.2)第1外显子上游1 138 bp及下游154 bp共1 292 bp为GLUT3全长启动子所在区域,设计引物进行PCR,上游引物5’-TACGGTACCACATGCTCAGCTGCTGCTCCAC-3’,下游引物5’-TAGCTCGAGTACCGACTGCTGGAGCTG ATCT- 3’,其中GGTACC和CTCGAG分别是内切酶KpnI和XhoI的识别位点。以基因组DNA提取试剂盒提取的大鼠基因组DNA为模板,扩增出大鼠GLUT3基因5’侧翼区。PCR扩增参数为:94 ℃预变性5 min, 94 ℃ 30 s,51 ℃ 30 s,72 ℃ 90 s,30个循环。选择pGL3-Basic作为克隆表达载体,其结构图谱见图1。PCR反应产物和pGL3-Basic 经KpnI/XhoI双酶切,切胶回收,连接后转化大肠杆菌DH5α感受态,阳性菌抽提质粒,双酶切筛选连入大小正确外源基因的转化子,送测序。引物合成及测序由广州Invitrogen公司完成。

Figure 1. The structure map of pGL-Basic.

3细胞培养

PC12细胞为本实验室长期保存,用高糖DMEM培养基培养,内含10%胎牛血清,未含抗生素,种植于培养瓶中,37 ℃、5%CO2湿化培养箱培养,倒置显微镜下观察。

4GLUT3启动子报告基因的转染

按照Lipofectamine 2000说明书进行。PC12细胞在转染前1 d按照1×107/L密度接种到96孔无菌培养板中,每孔100 μL。次日观察细胞,状态良好,细胞融合度达60%~70%时,进行分组转染:实验组: pGL3-GLUT3+pRL-TK;对照组:pGL3-Basic+pRL-TK,其中pRL-TK是内对照,每次实验设置3个复孔,实验重复3次。每孔0.2 μg质粒和0.04 μg pRL-TK,用Opti-MEM无血清培养基稀释到25 μL;取0.5 μL的Lipofectamine 2000用Opti-MEM稀释到25 μL,各自混匀5 min后再混匀两者,室温孵化20 min,即为转染复合物。在此期间使用PBS或Opti-MEM洗涤细胞2次,加入50 μL Opti-MEM,孵化结束后按每孔50 μL转染复合物,分组加入到96孔板的每一孔中,轻轻摇匀。37 ℃、5%CO2细胞湿化培养箱内培养,6 h后更换高糖DMEM培养基。

5正常和缺糖处理

5.1对实验组和对照组的转染细胞处理 更换新的正常高糖DMEM培养基培养24 h后裂解细胞,进行双萤光素酶检测。

5.2对转染pGL3-GLUT3实验组的PC12细胞处理 对生长状态良好的转染细胞分别给予高糖DMEM(4 500 mg/L)、低糖DMEM(1 000 mg/L)、无糖DMEM(0 mg/L)培养,均含10%胎牛血清,每次实验设置3个复孔,实验重复3次,37 ℃、5%CO2湿化培养箱培养,缺糖时段为10 min、15 min、30 min、1 h、3 h、6 h、12 h、24 h、48 h和72 h。48 h后换同样处理培养基1次,减少干扰,分段裂解细胞,进行双萤光素酶检测。

6启动子活性检测

按照Promega的双萤光素酶报告基因检测系统操作手册进行细胞裂解和萤光检测,萤光检测在Monolight 3010 luminometer 上进行,检测时间为10 s,结果以X=萤火虫萤光素酶活性/海肾素萤光素酶活性记录。

7统计学处理

结 果

1GLUT3启动子报告基因的克隆

以大鼠全血基因组DNA为模板,PCR扩增出1 292 bp,见图2,挑取单一菌落摇菌,取菌液作为模板做PCR,结果显示菌落中含有目的片段的DNA序列。pGL3-Basic 经KpnI/XhoI双酶切连接,转化感受态DH5α,扩增后PCR。电泳提取阳性菌内质粒,经双酶切后,证实所提取得质粒内已经接入预计大小的外源片段,见图3。

Figure 2. GLUT3 promoter PCR product (Lane 1).M: DNA marker DL2000.

2双萤光素酶报告基因检测

在正常高糖培养基培养下转染24 h后检测萤光素酶的表达水平,转染有pGL3-GLUT3的PC12细胞萤光素酶的表达显著增高,是转染空载体pGL3-Basic 活性的5.14倍,见图4。

正常、低糖、无糖处理,分别在以上10个时段,检测双萤光素酶活性的表达。缺糖时间0~3 h双萤光素酶活性表达变化不明显, 在低糖无糖情况下3~24 h阶段活性变化逐渐增强,24 h表达变化达到最高水平,无糖和低糖的GLUT3活性分别是正常高糖活性的1.72和3.10倍,48和72 h活性均有明显升高,见图5。

Figure 3. Electropherogram of GLUT3 promoter digested by dual restriction enzymes. M: DNA marker DL2000; Lane 1: GLUT3 promoter digested by Kpn I/Xho I.

Figure 4. The dual luciferase activity of pGL3-GLUT3. PC12 cells were transiently transfected with pGL3-Basic and pGL3-GLUT3, and pGL-TK served as internal control. After 24 h, the dual luciferase activity was examined±s.n=3.*Plt;0.05 vs pGL-Basic group.

Figure 5. The dual luciferase activity of GLUT3 promoter in hyperglucose,hypoglucose and glucose-free DMEM. PC12 cells were transiently transfected with pGL3-Basic and pGL3-GLUT3, and pGL-TK served as internal control. After 24 h, the medium was changed to hyperglucose,hypoglucose and glucose-free DMEM incubation for additional 10 time periods before measurement of dual luciferase activity±s.n=3.*Plt;0.05 vs hyperglucose(normal).

讨 论

缺血、低糖血症、贫血、恶性肿瘤内部肿瘤缺血缺氧都会导致细胞处于低糖状态,会不同程度地影响GLUT3的表达,另外其它不同因素也对GLUT3产生影响,比如:雌激素、K+浓度、N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDA)。最近研究显示:神经营养因子(neuro-trophic factor,NF)、一氧化氮(NO)、生酮膳食、β-淀粉样肽(amyloid beta-peptide,Aβ)、3-硝基丙酸(3-nitropropionic acid, 3-NPA)等可以使GLUT3 mRNA和蛋白水平增高[8-11]。

本研究中,在正常高糖培养基培养下转染24 h后检测荧光素酶的表达水平,与转染空载体pGL3-Basic相比,转染有pGL3-GLUT3的PC12细胞荧光素酶的表达显著增高, 从而证实了pGL3-GLUT3真核表达载体构建成功,pGL3-GLUT3内连入的片段带有启动子功能。

从缺糖10个时段结果看出,缺糖0~3 h双荧光素酶活性表达变化不明显,考虑缺糖是比较缓慢的干预措施,会诱发多种自身调节机制,可以调动应激、糖酵解和糖异生等机制来满足对能量的需求。在缺糖3~24 h启动子活性变化逐渐增强,24 h表达达到最高水平,无糖的变化活性强于低糖的,考虑缺糖开始激活GLUT3的转录调控,诱导GLUT3基因的高表达。另外动物实验缺血缺氧/再灌注也支持GLUT3在mRNA和蛋白水平24 h的表达最明显[12],所以推断,24 h是研究GLUT3在缺糖情况下活性表达十分有意义的时点。

文献表明GLUT3转录调控受多种基因调节,在神经元细胞、恶性肿瘤细胞、单核细胞中GLUT3对缺氧的反应是通过HIF进行调节的[13];在肌肉细胞中胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)通过转录特异性因子-1(transcription specificity factor 1, Sp-1)调控GLUT3的表达[14];在神经细胞分化过程中SP1/SP3可能和小鼠Y盒蛋白-1(mouse Y box protein, MSY-1)一起参与调节GLUT3的转录活性激活[15];在神经传输过程中出现底物缺乏的情况时,磷酸化的反应元件结合蛋白(cAMP response element-binding protein, CREBP)可能调节着GLUT3的表达[16]。

本实验通过生物信息软件预测GLUT3启动子序列,成功地扩增出了包含有第1外显子及其5’侧翼区的序列,克隆入pGL3-Basic中,构建出pGL3-GLUT3报告基因载体,并转染入PC12细胞后,经双荧光素酶报告基因检测系统检测,证明其转录活性。在缺糖状态下诱发GLUT3活性表达,了解缺糖时间与GLUT3活性的关联。该研究为更多地了解GLUT3在缺糖和其它因素下的转录调控机制奠定了基础。

[1] Simpson IA, Carruthers A,Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters[J]. J Cereb Blood Flow Metab, 2007, 27(11): 1766-1791.

[2] Gómez O, Ballester-Lurbe B, Poch E,et al. Developmental regulation of glucose transportersGLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex[J]. J Anat, 2010, 217(5): 616-623.

[3] Fung C, Evans E, Shin D, et al. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice[J]. J Neurosci Res, 2010, 88(15): 3386-3398.

[4] Espinoza-Rojo M, Iturralde-Rodríguez KI, Chánez-Cárdenas ME, et al. Glucose transporters regulation on ischemic brain: possible role as therapeutic target[J]. Cent Nerv Syst Agents Med Chem, 2010, 10(4): 317-325.

[5] Ganguly A, McKnight RA, Raychaudhuri S, et al. Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction[J]. Am J Physiol Endocrinol Metab, 2007, 292(5):E1241-E1255.

[6] Fung C, Evans E, Shin D, et al. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice[J]. J Neurosci Res, 2010, 88(15): 3386-3398.

[7] Thoidis G, Kupriyanova T, Cunningham JM, et al. Glucose transporterGLUT3 is targeted to secretory vesicles in neurons and PC12 cells[J]. J Biol Chem, 1999, 274(20): 14062-14066.

[8] Ayala FR, Rocha RM, Carvalho KC, et al. GLUT1 andGLUT3 as potential prognostic markers for oral squamous cell carcinoma[J]. Molecules, 2010, 15(4): 2374-2387.

[9] Tsukioka M, Matsumoto Y, Noriyuki M, et al. Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis[J]. Oncol Rep, 2007, 18(2): 361-367.

[10]Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.

[11]陈为安,杨得奖,屈 洋,等. 3-硝基丙酸预处理对脑缺血耐受模型GLUT1和GLUT3表达的影响[J]. 中国病理生理杂志,2010,26(11):2212-2216.

[12]李方成,陶宗玉,刘安民,等.葡萄糖转运体3在脑缺血/再灌注后缺血半影区表达的变化及意义[J].中国病理生理杂志,2004,20(12):2276-2279.

[13]Simpson IA, Dwyer D, Malide D, et al. The facilitative glucose transporterGLUT3: 20 years of distinction[J]. Am J Physiol Endocrinol Metab, 2008, 295(2): E242-E253.

[14]Copland JA, Pardini AW, Wood TG,et al. IGF-1 controlsGLUT3 expression in muscle via the transcriptional factor Sp1[J]. Biochim Biophys Acta, 2007, 1769(11-12): 631-640.

[15]Rajakumar A, Thamotharan S, Raychaudhuri N, et al. Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons[J]. J Biol Chem, 2004, 279(25): 26768-26779.

[16]Weisová P, Concannon CG, Devocelle M, et al. Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons[J]. J Neurosci, 2009, 29(9): 2997-3008.

MicroRNA-122通过调节多重耐药基因表达和诱导细胞周期阻滞

增强肝癌细胞对阿霉素与长春新碱的敏感性

肝细胞癌具有血管增生过多,快速增长且对传统化疗敏感性低的特点。MicroRNA-122,又称miR-122,是具有肝脏特异性的微小RNA,在肝癌细胞中的表达往往处于低水平。研究发现,用腺病毒载体转染肝癌细胞致miR-122高表达,可使肝癌细胞改变对阿霉素和长春碱的敏感性。对细胞周期分布的分析提示,miR-122的增殖抑制作用与G2/M期细胞数量增加有关。在miR-122高水平的情况下,阿霉素、长春碱综合治疗结果使处于G2/M期的肝癌细胞大量积累。进一步研究说明miR-122高表达可下调多重耐药基因MDR-1、GST- 和MRP,同时下调抗凋亡基因bcl-w和细胞周期相关基因cyclin B1,最终改变肝癌细胞对化疗药物的敏感性。总之,用腺病毒载体转染miR-122联合化疗药物可诱导肝癌细胞在G2/M期停滞,从而抑制细胞增长,其部分机制是促使肿瘤细胞多重耐药相关基因和cyclin B1表达下调。

Cancer Lett, 2011, 310(2):160-169(李 盼)

CloningofratGLUT3promoteranddeterminationofitsactivityunderglucosedeprivation

JIANG Guang-yi1, ZHENG Chuan-yi2, YU Jian1,LI Jun-liang1,XU Xin-ke1, ZHENG Mei-guang1, LI Fang-cheng1

(1DepartmentofNeurosurgery,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China;2DepartmentofNeurosurgery,TheAffiliatedHospital,HainanMedicalCollege,Haikou570125,China.E-mail:sjwkli@163.com)

AIM: To construct the luciferase reporter gene vector containing the promoter of rat glucose transporter type 3 (GLUT3) gene and to identify the transcriptional activity of the promoter in normal and low glucose conditions.METHODSThe promoter sequence ofGLUT3 gene was predicted by the software of bioinformatics, which has 1 292 bp in length and contains the first exon. The DNA of the promoter was acquired from rat whole blood by PCR and dual restriction enzyme digestion, and was cloned into luciferase reporter vector pGL3-Basic. The reporter gene vector pGL3-GLUT3 containingGLUT3 promoter was cotransfected with pRL-TK (thymidine kinase) vector (used as inner control) into PC12 cells. Relative light unite (RLU) was measured by dual luciferase report gene assay system to prove whether there were promoter elements in this fragment. The activity of luciferase reporter gene was examined in the cells cultured with normal-glucose, low-glucose and glucose-free media.RESULTSThe promoter sequence was amplified by PCR, and was consistent with the sequence showed in GenBank. Compared with negative control pGL3-Basic, RLU of pGL3-GLUT3 was obviously increased. The responsiveness of luciferase reporter gene under glucose deprivation was higher than that in normal medium at 24 h.CONCLUSIONGLUT3 luciferase reporter vector is successfully constructed. pGL3-GLUT3 is an effective tool for studying the induction and regulation of gene transcription under the condition of glucose deprivation.

Genes,GLUT3; Promoter; Glucose deprivation; Luciferase reporter gene; Transcriptional regulation

1000-4718(2011)11-2147-05

Q78

A

10.3969/j.issn.1000-4718.2011.11.020

2011-04-28

2011-09-23

国家自然科学基金资助项目(No.30770765);广东省自然科学基金资助项目(No.07001600)

△通讯作者 Tel:020-81332016; E-mail: sjwkli@163.com

猜你喜欢

萤光报告基因低糖
低糖电饭煲技术分析
巴基斯坦:推出低糖杧果品种
小心掉入“低糖饮品”陷阱
流萤之光
活色萤光“耀”个性
流萤之光
车胤萤光苦读终所成
低糖食品的优势
基于报告基因检测的PXR、FXR和LXRα激动剂高通量筛选模型的建立
启动子陷阱技术在植物启动子克隆研究中的应用