“转化”思想在小学数学教学中的渗透
2024-11-05张烨
【摘要】“转化”思想是一种极为重要的数学思想。在小学数学教学中,教师要选择“转化点”、渗透“转化法”、开放“转化域”。通过“转化”思想的融入、渗透,沟通数学学科知识关联,提升学生的学习能力。教师要赋予学生充分的转化时空,赋予学生转化的自主性、自能性权利。通过转化思想的融入、渗透,构建整体性、系统性、结构性的教学脉络。
【关键词】小学数学;“转化”思想;思想渗透
“转化”思想是一种重要的数学思想,贯穿于学生数学学科知识学习的始终。“转化”思想体现的是一种普遍联系、运动变化的哲学观念,对于学生的学习、生活都发挥着重要作用。在小学数学学科课程教学中,教师要注重转化思想的融入、渗透。通过转化思想的教学,能将复杂的问题简单化、将未知的问题已知化、将陌生化的问题熟悉化。对于数学学科课程中的转化思想,教师应当采用“散点渗透”“散点融入”等的方式,有计划、有目的、有组织地展开教学。作为教师,要立足于小学数学学科知识的全局视野,深入发掘数学学科知识中蕴含的转化思想,对转化思想的教学进行统筹考量,并将其通过教学凸显、突出出来。通过转化思想的融入、渗透,构建整体性、系统性、结构性的教学脉络。
一、选择“转化点”,沟通知识关联
数学学科知识有着千丝万缕的关联,这就为转化思想的普遍融入、渗透提供了可能。可以这样说,任何一个新知的建构,从某种意义上说,都是旧知转化而成的。作为教师,在教学中要选择好“转化点”,引导学生养成转化思维,让学生通过转化建构数学新知、沟通知识关联、有效解决问题。选择“转化点”,要求教师要对数学知识有着精准的把握。作为教师,要唤醒、激活学生的已有认知经验,促进学生的学习迁移、转化。
选择“转化点”,教师可以从两个维度展开:其一是数学学科知识的纵向维度,即新旧知识之间的关联、转化;其二是数学学科知识的横向维度,即彼此知识之间关联、转化。通过引导学生对知识的纵向转化,能让学生理解数学学科知识的“前世今生”,能让学生对数学学科知识的认知螺旋上升。通过引导学生知识的横向转化,能让学生把握数学学科知识的“左邻右舍”。如教学苏教版小学数学教材五年级上册“除数是小数的除法”,教师就应当引导学生应用“商不变的规律”,将除数是小数的除法转化成除数是整数的除法。由此,“商不变的规律”就是“除数是小数的除法计算”教学的转化点;如教学“异分母分数加减法”,教师就应当引导学生将异分母分数加减法转化为同分母分数加减法,“通分”就是其中的转化点;如教学“小数乘法”,教师就应当引导学生将小数乘法转化为整数乘法,“小数点移动引起小数大小的变化规律”就是其中的转化点。对于数学学科课程的某一个教学内容来说,“转化点”是极其重要的。借助于转化点,教师能启发、引导学生的自主转化、自能转化。
转化不仅是数学学科的一种数学思想,也是学生数学学习的一种方法,还是学生数学学习的一种策略。转化思想在学生的数学学习中发挥着重要的作用。作为教师,要在教学中给学生提供转化的素材,培育学生的转化意识,充分发挥转化思想的育人功能,彰显转化思想的育人价值。要引导学生转化、催生学生转化、优化学生转化,激发学生在数学学习过程j7Ud1vSquJxJuU3RVtZ4kg==中产生强烈的转化心向,让转化成为学生数学学习的一种理性自觉、一种内在的要求。
二、渗透“转化法”,提升学习能力
在数学学科课程中,“转化思想”无处不在。作为教师,要自觉地融入、渗透转化的方法,引导学生掌握转化的策略,让学生学会转化。要激发学生的转化兴趣,调动学生的转化积极性,让学生敢于转化、善于转化、乐于转化。要着力提升学生的转化能力,让学生在学习过程中既会展开“数与数”之间的转化,也会展开“形与形”之间的转化,还会展开“数与形”之间的转化。在教学中,教师既要引导学生显性转化,让学生明晰转化的目标、转化的方向,也可以引导学生隐性转化,隐含转化的“等价思想”。
在教学中,教师既要引导学生展开“化新为旧”的转化,也要引导学生展开“化繁为简”的转化;既要引导学生展开“化陌生为熟悉”的转化,也要引导学生展开“化隐为显”的转化;既要引导学生展开“化曲为直”的转化,也要引导学生展开“化整为零”的转化等。如教学苏教版小学数学教材五年级上册“梯形的面积”这一部分内容时,笔者立足于新旧知识的转化,致力于引导学生将梯形的面积转化成已经学习的其他图形的面积。为此,笔者赋予学生充分的转化权利,让学生采用转化的经验自主转化。如此,有学生用剪拼法将梯形转化成长方形;有学生用倍拼法将梯形转化成平行四边形等。还有学生创新转化方法、转化策略,将梯形转化成三角形等。通过引导学生分析转化过程、对比转化的方法、策略,让学生在转化的过程中不被表象所干扰、迷惑,让学生在转化的过程中能抓住数学学科知识的内在本质、规律,让学生的转化符合逻辑,从而让学生通过数学学科内容的学习形成正确的观念。
转化方法是学生转化思想的核心,是一种可操作性的学习策略。从某种意义上说,学生的数学学习就是不断转化的过程。通过转化,能促进学生数学学习的不断进阶。如在上述“梯形的面积”教学中,“剪拼法”“倍拼法”“分割法”等就是学生具体的转化策略,他们都是将新知转变为旧知的过程。在教学中,教师要凸显转化的策略、转化方法的优越性,凸显转化思想强大的解决问题力量。要让学生充分感受、体验到转化策略与方法的意义、价值,从而让转化的思想真正走进学生的内心,成为学生数学学习力的重要组成,成为学生数学核心素养的重要组成。
三、开放“转化域”,赋予转化时空
引导学生转化,要求教师在教学中不能束缚学生的思维,更不能钳制学生的想象。渗透、融入转化的思想,要求教师要开放“转化场”“转化域”,赋予学生充分的转化时空。为了促进学生的转化,充分赋予学生转化的时空,教师在教学中一方面要引导学生勾连转化与其他相关的数学思想,如分类转化、对应转化、递进转化等;另一方面引导学生树立普遍联系的思想,让学生在学习过程中能自觉地转化、有效地转化。通过引导学生转化,让转化思想在学生的头脑中活起来,让转化给学生带走“带得走的数学”。
华东师范大学已故教授张奠宙曾经这样说:“只有将数学思想方法融入到教师的日常教学之中,成为教师备课的重要组成,四基才能真正落实到位”。作为教师,要开辟转化思想的思维场、想象场、实践场,将数学转化思想真正融入、渗透到教师的日常教学行为实践中去,渗透、融入到学生的日常学习行为、思考方式中去。只有这样,才能有效地提升学生的数学转化质量,优化学生的数学转化品质、完善学生的数学转化生态。如教学苏教版小学数学教材六年级上册“分数乘法应用题”,笔者以单位“1”作为转化核心,引导学生进行关键句的转化,从而为学生有效解决分数乘除应用题中的相关问题奠定了坚实基础。如“甲数是乙数的1/2”,不同的学生以不同的量作为单位“1”,从而形成了不同的转化。如“乙数是甲数的2倍”“甲数是两数总和1/3”“乙数是两数总和的2/3”“甲数比乙数少1/2”“乙数比甲数多1倍”等。通过这样的自由转化,不仅能让学生建构多样化的解题思路,而且能引导学生统一分数乘法应用题和分数除法应用题的解题思路。借助于“分数”这样的一个桥梁,能让学生对分数乘除法应用题的思路分析更清晰、更灵活、更具有适恰性、适切性等。
开放转化的思维场域、实践场域,就是要引导学生置身于一个转化的自主性能时空、自由性时空之中。作为教师,要结合具体的内容,来培育学生的转化思想、优化学生的转化思想。在教学中,教师要从“教”走向“学”、从“引”转向“放”,从而创设机会、搭建平台,引导学生自主转化,并让学生对彼此的转化展开互动、交流。作为教师,要通过转化思想的渗透、融入,发掘学生的学习潜质、潜能,促进学生对数学思想的感受、体验和感悟。
转化思想是一种极为重要的数学思想。在小学数学教学中,教师要自觉地、自由地、自然地进行转化思想的渗透、融入。在融入、渗透的过程中,教师要找准转化的起点,谋划转化的教学过程,赋予学生转化思想的生长性时空。通过转化思想的融入、渗透,让学生建立数学学科知识与其他学科知识、数学学科知识与学生的生活、数学学科知识与学生的学习之间的关联,并进一步完善学生的认知结构、提升学生的思维、促进学生的学习迁移。
【参考文献】
[1]邹小云.转化思想在小学数学教学中的应用[J].江西教育,2023(35).
[2]杨碎粉.在小学低年级数学教学中注重转化思想的渗透[J].新智慧,2023(14).
[3]杨海芳.转化思想在小学数学教学中的渗透探析[J].智力,2023(13).