酿酒葡萄细胞壁多糖组分研究进展
2024-06-23姬欣欣张军翔高宇
姬欣欣 张军翔 高宇
摘 要:酿酒葡萄细胞壁成熟涉及果胶、纤维素、半纤维素等一系列多糖大分子组分的结构调控,同时酿酒葡萄品种、栽培处理与气候等因素也会影响果实成熟过程中细胞壁多糖的结构演化。酿酒葡萄成熟过程及酿造过程中细胞壁多糖组分的结构变化会影响葡萄酒的品质。本文结合国内外研究进展,简要阐述了酿酒葡萄果实结构及其成熟过程中细胞壁多糖组分的微观修饰机制,同时讨论了葡萄品种、气候、栽培处理对酿酒葡萄果实细胞壁多糖的影响。此外,归纳了酿造过程中不同工艺处理下细胞壁多糖的降解机制,以期为酿酒葡萄细胞壁多糖的进一步研究提供理论参考。
关键词:酿酒葡萄;果实细胞壁;成熟;多糖
Research Progress on Polysaccharide Components of Wine Grape Cell Wall
JI Xinxin1, ZHANG Junxiang2, GAO Yu2*
(1.College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China;
2.Faculty of Wine and Horticulture, Ningxia University, Yinchuan 750021, China)
Abstract: Wine grape cell wall ripening involves the structural regulation of a number of polysaccharide macromolecules, such as pectin, cellulose, hemicellulose, etc. Meanwhile, wine grape varieties, cultivation treatments and climatic factors also affect the structural evolution of cell wall polysaccharides during the fruit ripening process. The structural changes of cell wall polysaccharide components during wine grape ripening and vinification will affect the quality of wine. This paper summarizes the structural micro-modification mechanism of cell wall polysaccharide components during the ripening process of wine grape berries, discusses the effects of grape variety, climate, and cultivation treatments on wine grape berry cell wall polysaccharides, and summarizes the degradation mechanism of cell wall polysaccharides under different technological treatments in the vinification process in order to provide theoretical references for further study of wine grape berry cell wall polysaccharides.
Keywords: wine grape; fruit cell wall; ripely; polysaccharides
酿酒葡萄果实成熟是一个非常复杂的动态过程,涉及一系列生理和生化变化。在常规的品质成分之外,酿酒葡萄细胞壁多糖的复杂结构在果实发育成熟过程中不断修饰演化,并最终影响葡萄果实及葡萄酒品质[1]。为了进一步提升酿酒葡萄果实及葡萄酒品质,有必要逐步探索酿酒葡萄果实细胞壁成熟相关的关键结构大分子演变机制,并不断明晰酿酒葡萄品种、栽培方式、气候等因素对细胞壁的影响机制[2-3]。
1 酿酒葡萄果实组成及结构
酿酒葡萄主要由果皮、果肉、籽和蜡质层构成。蜡质层是酿酒葡萄果实的天然保护膜,可以起到防晒、保湿、抵御病虫害和减少水分流失的作用[4]。位于蜡质层之下的是对红葡萄酒中多糖、多酚、花色苷等有积极贡献且对机械破碎具有高耐受力的葡萄果皮[5]。酿酒葡萄果皮占葡萄浆果总干重的5%~10%,细胞壁多糖约占果皮物质的一半,其主要由果胶、纤维素、半纤维素等组成,被认为是酿酒葡萄多糖的主要来源[6-8]。酿酒葡萄果肉占果重的近70%,是游离糖和有机酸的主要储存组织。相较于果皮与果肉,葡萄籽含有高浓度的粗糙、苦涩的单宁和酚类物质[4]。
植物细胞壁主要分为初生细胞壁、胞间层和次生细胞壁,三者具有不同的化学组成和结构[9]。酿酒葡萄、番茄、草莓、蓝莓等成熟期的肉质果实只发育到初生细胞壁和胞间层,很少发育成次生细胞壁[10]。葡萄初生细胞壁结构中,纤维素微纤丝被半纤维素包覆,并通过糖苷键和氢键相互交织,形成多糖骨架作为细胞壁的支撑结构,钙离子与果胶通过共价键形成钙桥,介导细胞间的黏附,增强细胞壁强度,提高果实硬度[11-12]。果胶、半纤维素和糖蛋白组成的基质多糖嵌入骨架中,各组分间相互联系,使葡萄细胞壁成为一个非常复杂的动态复合体[13]。
1.1 酿酒葡萄果实细胞壁果胶组分及结构
果胶是初生细胞壁和胞间层的主要成分之一,占细胞壁干重的30%~35%,是细胞壁网络骨架之间的交联物,有助于增强细胞间的黏附和机械强度、控制细胞壁对酶的渗透性、决定细胞壁的持水性。此外,果胶对病原微生物和果皮创伤的防御机制起着重要作用[14-16]。目前,普遍认可酿酒葡萄细胞壁果胶结构是“平滑区与毛发区”,平滑区是由无支链的半乳糖醛酸聚糖(Homogalacturonan,HG)结构域组成,而具有高分支侧链的鼠李糖半乳糖醛酸聚糖I型(Rhamnogalacturonan I,RG I)和鼠李糖半乳糖醛酸聚糖Ⅱ型(Rhamnogalacturonan Ⅱ,RG Ⅱ)构成毛发区。该模型的果胶结构具有一条主链,并含单条或多条支链,主链的骨架由HG、RG I、RG Ⅱ这3个主要的结构域交替连接而成[16]。HG是果胶的主要成分,约占果胶总量的65%,是由半乳糖醛酸(Galacturonic Acid,GalUA)通过α-1,4-糖苷键连接的聚合物,可以在C-6处甲酯化,在O-2或O-3处乙酰化[17]。RG I占果胶总量的20%~35%,是一类高度保守且具有多样化侧链的结构域,其主链由[α-(1→2)-D-GalpA-α-(1→4)-L-Rhap]n(n>100)的重复单元和侧链鼠李糖残基构成,这些侧链被阿拉伯糖(Arabinan,Ara)、半乳糖(Galactose,Gal)等中性糖在O-4处取代[18-20],RG I的侧链还可与蛋白质连接,这使得果胶结构非常复杂[21]。RG Ⅱ同样是高度保守的结构,其主链骨架由1,4-α-D-半乳糖醛酸残基组成[19]。
1.2 酿酒葡萄果实细胞壁纤维素、半纤维素组分及结构
纤维素作为酿酒葡萄细胞壁基本骨架的主要大分子,其结构稳定,不易被细胞内的水解酶降解[22]。纤维素是由几千个β-葡萄糖分子以β-1,4糖苷键连接而成的直链,30~100个纤维素分子通过链间氢键平行排列组成一个微纤丝,再通过纤维素微纤丝-木葡聚糖构成细胞壁的网络骨架[23-24]。纤维素微纤丝之间的空间通常由果胶、半纤维素、细胞壁蛋白填充,纤维素微纤丝具有规则分布的亲水性和疏水性表面,能够与半纤维素等其他多糖相互作用[25]。形成半纤维素的主要多糖为木葡聚糖,研究表明木葡聚糖可通过离子键和共价键作用与纤维素、木质素及结构蛋白结合,从而构成葡萄细胞壁的骨架网络,维持细胞壁的完整性与机械强度[26]。
2 酿酒葡萄果实成熟过程中细胞壁多糖结构微观修饰
酿酒葡萄果实成熟过程伴随着果皮细胞壁胞间层溶解,贯穿细胞壁的纤维素基质也逐渐降解,导致细胞黏附减少,细胞间隙增加[27-29]。果胶甲酯酶、纤维素酶为主的多种酶共同作用会导致果胶、纤维素、半纤维素的结构和含量发生变化[30]。
2.1 酿酒葡萄果实细胞壁成熟过程中果胶组分及结构变化
酿酒葡萄果实成熟过程中果胶多糖含量和甲基酯化程度会逐渐变化。研究表明,随着酿酒葡萄果实细胞壁成熟,果胶多糖中Ara与Gal组成的中性多糖阿拉伯半乳聚糖I(Arabinogalactan Proteins,AGP I)含量下降[31]。这是由于β-半乳糖苷酶的作用使Gal的溶解度增加,降低了(1-4)β-与吡喃半乳糖残基的连接,使AGP I减少,果实开始软化。随着酿酒葡萄果实细胞壁的成熟,HG含量显著下降[32-33],这与多聚半乳糖醛酸酶(Polygalacturonase,PG)、α-半乳糖苷酶、β-半乳糖苷酶以及果胶甲酯酶(Pectin Methyl Esterases,PME)的活性增加有关[33-34]。CHYLINSKA等[9]发现PG活性增加会导致GalUA、HG在番茄果实成熟过程中减少。GIL等[35]研究发现,在‘赤霞珠果实细胞壁成熟过程中,甘露糖(Mannoprotein,Man)的含量略有下降。
根据甲基酯化程度,果胶可分为高甲酯化果胶和低甲酯化果胶[18]。酿酒葡萄果实中果胶成分在细胞壁初始合成时被高度甲酯化,且主要发生在HG主链上。在果实成熟过程中,在PME的作用下HG主链的甲酯化程度逐渐降低,去甲酯化的“光滑”果胶可进一步被PG降解。PME通过对HG主链进行脱酯处理,暴露出可被PG和果胶裂解酶进一步降解的部位,使果胶多糖在成熟过程中出现解聚现象[34]。此外,β-半乳糖苷酶编码基因的mRNA在果实中的积累从转色前一直持续到转色后,这与酿酒葡萄细胞壁成熟过程中AGP I含量的下降一致[36]。
2.2 酿酒葡萄果实细胞壁成熟过程中纤维素、半纤维素组分及结构变化
纤维素、半纤维素的降解也是酿酒葡萄细胞壁成熟的关键因素[30]。ZIETSMAN等[37]发现‘比诺塔吉葡萄细胞壁成熟过程中木葡聚糖的含量下降,MOORE等[38]在‘赤霞珠果实细胞壁成熟过程中也得出了这一结论。YAKUSHIJI等[39]发现‘巨峰葡萄在转色期间其果皮细胞壁纤维素含量降低、木葡聚糖和果胶多糖解聚。VICENS等[40]报道了‘西拉葡萄细胞壁在成熟过程中木糖与木葡聚糖同时减少,纤维素与半纤维素发生解聚。GUILLAUMIE等[41]发现‘霞多丽葡萄果实成熟期果皮细胞壁中4种木葡聚糖水解酶增加,半纤维素中木葡聚糖降解。另有研究发现草莓成熟过程中半纤维素也会降解[42]。
2.3 扩展蛋白在酿酒葡萄果实细胞壁成熟过程中的作用机制
扩展蛋白(Expansin,EXPs)是一种非酶促细胞壁蛋白,其能够通过与葡聚糖包被的纤维素结合而打破葡聚糖-微纤丝之间的化学键,使纤维素表面的葡聚糖易受纤维素酶的影响导致果实细胞壁疏松[25,43]。SCHLOSSER等[44]发现‘赤霞珠葡萄转色期扩展蛋白基因(EXP3、EXPL)表达量增加导致果皮细胞壁扩张,表明EXPs加快了果实细胞壁成熟。ISHIMARU等[45]从‘巨峰葡萄果实中分离出Vlexp1、Vlexp2、Vlexp3共3种扩展蛋白,发现Vlexp3在转色期表达量明显增加,且在果实成熟过程中Vlexp1和Vlexp2的表达量也有增加,表明这3个扩展蛋白基因与细胞分裂或扩展以及浆果成熟软化有关,其表达上调可能有助于裂解细胞壁的纤维素-木葡聚糖网络。EXPs在不同植物果实中作用有差异,BRUMMELL等[46]发现番茄中的LeEXP1可以增强果实硬度并延长其货架期,且LeEXP1和LePG的共同作用可以进一步抑制番茄果实的软化。
3 品种、气候、栽培处理对酿酒葡萄果实细胞壁的影响
3.1 品种对酿酒葡萄果实细胞壁的影响
不同品种的酿酒葡萄在成熟过程中细胞壁多糖结构和含量存在差异[47]。ORTEGA-REGULES等[48]发现在‘慕合怀特‘美乐‘赤霞珠葡萄细胞壁成熟过程中Gal含量、果胶的甲酯化与乙酰化程度均呈现下降趋势,相对而言,‘西拉葡萄细胞壁成熟中未发现这些变化。另有研究表明,与‘赤霞珠‘美乐‘西拉葡萄相比,‘慕合怀特葡萄细胞壁中Gal和纤维素含量更高,推测‘慕合怀特的细胞壁结构可能更紧密,因此该品种在浸渍酿造过程中萃取率可能更低、释放多糖更困难[47]。酿酒葡萄细胞壁的差异会影响后续浸渍酿造的效果,例如‘西拉葡萄细胞壁比‘赤霞珠与‘慕合怀特葡萄细胞壁更容易降解,因此其酒液中含有更多的RG Ⅱ与富含阿拉伯糖和半乳糖的多糖[49]。张雯等[50]研究了5种鲜食葡萄成熟过程中果实细胞壁结构及组分差异,发现在成熟过程中‘红地球葡萄的果胶含量增幅最高且PG活性最低。
3.2 气候对酿酒葡萄果实细胞壁的影响
受全球变暖的影响,酿酒葡萄面临生长期缩短、成熟期提前的问题[51-52],这种现象会导致细胞壁果胶溶解度增加、酚类物质积累不足、果实酸度降低,从而降低果实品质[53]。GAO等[1]发现过熟‘西拉葡萄细胞壁中的Gal、GalUA、Rha含量下降,Ara与半纤维素含量升高,果胶发生严重降解。GARRIDO-BANUELOS等[33]对比了不同年份不同温度采收的‘西拉葡萄细胞壁多糖组分差异,其结果与GAO等[1]的结论一致,发现低温环境采收的葡萄其细胞壁在酿造浸渍中释放到葡萄汁中的酚类物质和多糖类含量较高。APOLINA-VALIENTE等[54]研究发现不同的气候条件会影响‘慕合怀特葡萄细胞壁中RG Ⅱ的浓度。
3.3 栽培处理对酿酒葡萄果实细胞壁的影响
栽培处理可以减轻温度升高对酿酒葡萄细胞壁的不利影响。MARTINS等[55]研究发现在葡萄园中喷洒钙补充剂可以抑制细胞壁中PG及PME的活性,使扩展蛋白基因EXP6的表达量下调,缓解果胶降解。BANNA等[56]采用‘火焰无核葡萄接穗嫁接于4种砧木,发现‘1103 P砧木使葡萄果实细胞壁中PG、木聚糖酶和纤维素酶的活性降低,延长了葡萄果实的成熟软化。修剪枝条也可以缓解葡萄早熟给果实带来的不良影响,KISHIMOTO等[57]发现对‘赤霞珠‘丹魄和‘红马图拉纳的葡萄枝条进行主梢修剪可以使果实成熟期延迟1~2月,并且“侧引枝”和“次生诱导梢”两种葡萄藤修剪方式均会使‘美乐葡萄果实成熟期推迟一个月。另有研究表明,适量去除葡萄花簇也能够延长酿酒葡萄果实成熟[58]。此外,APOLINAR-VALIENTE等[47]发现‘慕合怀特与‘赤霞珠的杂交品种可以适应西班牙东部高温干旱条件。
4 葡萄酒酿造过程中果实细胞壁的降解机制
葡萄酒酿造过程中,将果皮细胞壁有效降解是酿造工艺的重中之重,这是因为影响葡萄酒品质的物质(多糖、花青素、单宁等)主要富集在果皮中[59]。为提高酿造过程中葡萄细胞壁的降解效率,研究人员尝试了多种方法,包括加酶、控温、延长浸渍时间以及使用各种现代浸渍技术(如脉冲电场、超声波辅助浸渍),可以在很大程度上改变葡萄酒中多糖的组分和含量,进而提高葡萄酒的整体品质。
4.1 酿酒葡萄果实细胞壁多糖在酿造过程中的演变
压榨、浸渍、发酵、发酵后浸渍、苹果酸-乳酸发酵及陈酿等不同的葡萄酒加工阶段,细胞壁多糖的结构和含量都会发生变化。葡萄浆果破碎入罐时,细胞壁被物理破碎导致果胶分解,极大地促进了可溶性多糖的释放,约有80%的AGP(主要是AGP Ⅱ)可以释放到酒体中,占红葡萄酒总多糖的40%~50%[60]。白葡萄酒和桃红葡萄酒在酒精发酵过程中Ara、Gal和HG的含量显著降低,红葡萄酒在酒精发酵过程中富含阿拉伯糖和半乳糖的多糖及RG Ⅱ的含量增加。在酒精发酵结束后葡萄酒中Man的含量最高,推测是因为酿造过程中酵母及葡萄细胞壁中Man的释放导致其含量不断增加[61]。后浸渍期间大部分多糖含量都有所减少,尤其是AGP大量减少,可能是因为它们与多酚产生的不稳定复合物相互作用形成沉淀[61]。研究表明,进行苹果酸-乳酸发酵的乳酸菌种类也决定着该过程中多糖浓度的变化[62]。另有研究表明,葡萄酒陈酿6个月后各种多糖含量会趋于稳定[63]。在葡萄酒装瓶前,离心、过滤和澄清剂等澄清手段可以使葡萄酒多糖含量下降,部分多糖的结构和性质会发生改变。
4.2 酿造工艺对葡萄酒多糖的影响
不同的酿造工艺(加酶、控温、延长浸渍时间等)可以在很大程度上改变葡萄酒中多糖的组分和含量。在酿造过程中,葡萄果实细胞壁中的内源酶可以使部分多糖解聚,例如果胶分解酶有助于果胶降解从而释放HG、AGP、RG Ⅱ等大分子量多糖[64]。研究表明,冷浸渍可以延长内源酶与酿酒葡萄果皮的接触时间,以增加葡萄细胞壁中AGP、RG Ⅱ等多糖的释放和溶解[65]。热浸渍有助于增加葡萄酒中RG Ⅱ、富含阿拉伯糖和半乳糖的多糖等可溶性多糖的含量[66]。超声处理和脉冲电场不仅能抑制葡萄酒中杂菌生长,还可以调节酿酒葡萄品质成分的萃取率、提高葡萄酒稳定性和感官品质。超声处理能通过激发PME和PG的活性来降低果实细胞壁中果胶和半纤维素结构域之间的交联,进而增加葡萄酒
中RG Ⅱ、Man等多糖的含量[67]。脉冲电场对葡萄果实细胞壁品质成分的提取效果取决于脉冲场强、脉宽、脉冲数、持续时间和提取介质特性及物料性质等。CHOLET等[68]通过中等强度(4 kV·cm-1)、持续时间短(1 ms)和低强度(0.7 kV·cm-1)、持续时间长
(200 ms)两种脉冲电场处理‘赤霞珠葡萄果皮,发现不同脉冲强度及持续时间对果胶结构的影响不同。
5 结语
综上所述,酿酒葡萄果实的成熟软化以及葡萄酒的发酵浸皮过程均涉及细胞壁中多种多糖的修饰及降解,且葡萄品种、风土条件、酿造技术等多种因素的相互作用均会影响葡萄成熟期乃至后续酿造过程中细胞壁多糖的演化,因此通过各种分析手段明晰细胞壁多糖的演化对于葡萄酒的生产控制具有重要意义。但由于多糖的结构极其复杂,如何准确研究多糖的演变是一个重大的挑战。近年来,高通量多糖抗体芯片技术的建立,使从大分子层面探索酿酒葡萄细胞壁多糖结构组分的变化规律成为可能,为未来根据采收期细胞壁状态制定“定向”酿造葡萄酒提供了理论支持。
参考文献
[1]GAO Y,FANGEL J U,WILLATS W J T,et al.Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh[J].Food Chemistry,2021,363:130180.
[2]FORLANI S,MASIERO S,MIZZOTTI C.Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens[J].Journal of Experimental Botany,2019,70(11):2993-3006.
[3]CHEN H J,CAO S F,FANG X J,et al.Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage[J].Scientia Horticulturae,2015,188:44-48.
[4]GAO Y,ZIETSMAN A J J,VIVIER M A et al.
Deconstructing wine grape cell walls with enzymes during winemaking: new insights from glycan microarray technology[J].Molecules,2019,24(1):165.
[5]ZHANG M W,ZHANG P A,LU S W,et al.Comparative analysis of cuticular wax in various grape cultivars during berry development and after storage[J].Frontiers in Nutrition,2021,8:817796.
[6]LI S Y,DUAN C Q,HAN Z H.Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking[J].Critical Reviews in Food Science and Nutrition,2023,63(8):1119-1142.
[7]APOLINAR-VALIENTE R,ROMERO-CASCALES I,GOMEZ-PLAZA E et al.The composition of cell walls from grape marcs is affected by grape origin and enological technique[J].Food Chemistry,2015,167:370-377.
[8]LAMPUGNANI E R,KHAN G A,SOMSSICH M,et al.Building a plant cell wall at a glance[J].Journal of Cell Science,2018,131(2):207373.
[9]CHYLI?SKA M,SZYMANSKA-CHARGOT M,DERYLO K,et al.Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit[J].Plant Physiology and Biochemistry,2017,119:328-337.
[10]PENG Z Z,LIU G S,LI H L,et al.Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review[J].International Journal of Molecular Sciences,2022,23(20):12482.
[11]WANG D,YEATS T H,ULUISIK S,et al.Fruit softening: revisiting the role of pectin[J].Trends in Plant Science,2018,23(4):302-310.
[12]ZAMIL M S,GEITMANN A.The middle lamella-more than a glue[J].Physical Biology,2017,14(1):015004.
[13]YOKOYAMA R,SHINOHARA N,ASAOKA R,et al.
The biosynthesis and function of polysaccharide components of the plant cell wall[M]//FUKUDA H.Plant Cell Wall Patterning and Cell Shape.Hoboken, USA: John Wiley & Sons,
Inc, 2014.
[14]NGOUEMAZONG E D,CHRISTIAENS S,SHPIGELMAN A,et al.The emulsifying and emulsion-stabilizing properties of pectin: a review[J].Comprehensive Reviews in Food Science and Food Safety,2015,14(6):705-718.
[15]COSGROVE D J.Expansive growth of plant cell walls[J].Plant Physiol Biochem,2000,38(1/2):109-124.
[16]易建勇,毕金峰,刘璇,等.果胶结构域精细结构研究进展[J].食品科学,2020,41(7):292-299.
[17]GAO Y,FANGEL J U,WILLATS W G T,et al.
Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking[J].Carbohydrate Polymers,2016,152:510-519.
[18]YAPO B M.Pectic substances: from simple pectic polysaccharides to complex pectins a new hypothetical model[J].Carbohydrate Polymers,2011,86:373-385.
[19]高华奇,王立芹,孙翠,等.采后跃变型果实软化与果胶降解的研究进展[J].果树学报,2022,39(10):1922-1934.
[20]KOUBALA B B,CHRISTIAENS S,KANSCI C,et al.
Isolation and structural characterisation of papaya peel pectin[J].Food Research International,2014,55:215-221.
[21]FUNAMI T,NAKAUMA M,ISHIHARA S,et al.
Structural modifications of sugar beet pectin and the relationship of structure to functionality[J].Food Hydrocolloids,
2011,25(2):221-229.
[22]BONNIN E,LAHAYE M.Contribution of cell wall modifying enzymes on the texture of fleshy fruits: the example of apple[J].Journal of the Serbian Chemical Society,2013,78(3):417-427.
[23]TURNER S,KUMAR M.Cellulose synthase complex organization and cellulose microfibril structure[J].Philos Trans A Math Phys Eng Sci,2018,376(2112):20170048.
[24]RAO J,LV Z,CHEN G,et al.Hemicellulose: structure, chemical modification, and application[J].Progress in Polymer Science,2023,140:101675.
[25]OPAZO M C,LIZANA R,STAPPUNG Y,et al.XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues[J].BMC Genomics,2017,18(1):852.
[26]LAMPORT D T A,TAN L,HELD M,et al.The role of the primary cell wall in plant morphogenesis[J].International Journal of Molecular Sciences,2018,19(9):2674.
[27]LIU J,ZHAO Y H,XU H,et al.Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L[J].International Journal of Food Science & Technology,
2021,56(6):3044-3054.
[28]FASOLI M,DELLANNA R,SANTO S D,et al.
Pectins, hemicelluloses and celluloses show specific dynamics in the internal and external surfaces of grape berry skin during ripening[J].Plant and Cell Physiology,2016,57(6):1332-1349.
[29]LIU B H,WANG K F,SHU X G,et al.Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage[J].Scientia Horticulturae,2019,246:557-562.
[30]海龙飞,栗温新,李志谦,等.软/硬肉葡萄果实细胞壁结构、组分及降解酶活性的变化[J].果树学报,2023,40(4):690-698.
[31]NUNAN K J,SIMS L M,BACIC A,et al.Changes in cell wall composition during ripening of grape berries[J].Plant Physiology (Bethesda),1998,118(3):783-792.
[32]MOORE J P,NGUEMA-ONA E,FANGEL J U,et al.
Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods[J].Carbohydrate Polymers,2014,99:190-198.
[33]GARRIDO-BANUELOS G,BUICA A,SCHUCKEL J,et al.Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: vintage and ripeness effects[J].Food Chemistry,2019,278:36-46.
[34]李艳,田冉文,郑伟,等.番茄绿熟期果实硬度与果皮结构及果胶含量的关系[J].中国蔬菜,2019(12):37-40.
[35]GIL M,QUIROS M,FORT F,et al.Influence of grape maturity and maceration length on polysaccharide composition of cabernet sauvignon red wines[J].American Journal of Enology and Viticulture,2015,66(3):393-397.
[36]NUNAN K J,DAVIES C,ROBINSON S P,et al.
Expression patterns of cell wall-modifying enzymes during grape berry development[J].Planta,2001,214(2):257-264.
[37]ZIETSMAN A J J,MOORE J P,FANGEL J U,et al.
Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes[J].Journal of Agricultural and Food
Chemistry,2015,63(10):2798-2810.
[38]MOORE J P,FANGEL J U,WILLATS W G T,et al.
Pectic-β(1,4)-galactan, extensin and arabinogalactan–protein epitopes differentiate ripening stages in wine and table grape cell walls[J].Annals of Botany,2014,114(6):1279-1294.
[39]YAKUSHIJI H,SAKURAI N,MORINAGA K.Changes in cell-wall polysaccharides from the mesocarp of grape berries during veraison[J].Physiologia Plantarum,2001,111(2):188-195.
[40]VICENS A,DAVID F,PASCALE W,et al.Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening[J].Journal of Agricultural and Food Chemistry,2009,57(7):2955-2960.
[41]GUILLAUMIE S,FOUQUET R,KAPPEL C,et al.
Transcriptional analysis of late ripening stages of grapevine berry[J].BMC Plant Biol,2011,11:165.
[42]JARA K,CASTRO R I,RAMOS P,et al.Molecular insights into FaEG1, a strawberry endoglucanase enzyme expressed during strawberry fruit ripening[J].Plants (Basel),2019,8(6):140.
[43]COSGROVE D J.Plant expansins: diversity and interactions with plant cell walls[J].Current Opinion in Plant Biology,2015,25:162-172.
[44]SCHLOSSER J,OLSSON N,WEIS M,et al.Cellular expansion and gene expression in the developing grape (Vitis vinifera L.)[J].Protoplasma,2008,232(3/4):255-265.
[45]ISHIMARU M,SMITH D L,GROSS K C,et al.
Expression of three expansin genes during development and maturation of Kyoho grape berries[J].Journal of Plant Physiology,
2007,164(12):1675-1682.
[46]BRUMMELL D A,Howie W J,Ma C,et al.Postharvest fruit quality of transgenic tomatoes suppressed in expression of a ripening-related expansin[J].Postharvest Biology and Technology,2002,25(2):209-220.
[47]APOLINAR-VALIENTE R,GOMEZ-PLAZA E,TERRIER N,et al.The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids[J].Journal of the Science of Food and Agriculture,2017,97(12):4029-4035.
[48]ORTEGA-REGULES A,ROS-GARCIA J M,BAUTISTA-ORTIN A B,et al.Changes in skin cell wall composition during the maturation of four premium wine grape varieties[J].Journal of the Science of Food and Agriculture,2008,88(3):420-428.
[49]APOLINAR-VALIENTE R,ROMERO-CASCALES I,WILLIAMS P,et al.Effect of winemaking techniques on polysaccharide composition of Cabernet Sauvignon, Syrah and Monastrell red wines[J].Australian Journal of Grape and Wine Research,2014,20(1):62-71.
[50]张雯,马依努尔·加马力,王敏,等.不同葡萄品种果肉质地和细胞结构及生理指标分析[J].西北植物学报,2022,42(11):1870-1879.
[51]SANTOS J A,FRAGA H,MALHEIRO A C,et al.
A review of the potential climate change impacts and adaptation options for European viticulture[J].Applied Sciences,2020,10(9):3092.
[52]SGUBIN G,SWINGEDOUW D,MIGNOT J,et al.
Non‐linear loss of suitable wine regions over Europe in response to increasing global warming[J].Global Change Biology,2023,29(3):808-826.
[53]LEEUWEN C V,DESTRAC-IRVINE A.Modified grape composition under climate change conditions requires adaptations in the vineyard[J].OENO One,2017,51(2):147-154.
[54]APOLINAR-VALIENTE R,WILLIAMS P,ROMERO-CASCALES I,et al.Polysaccharide composition of monastrell red wines from four different spanish terroirs: effect of wine-making techniques[J].Journal of Agricultural and Food Chemistry,
2013,61(10):2538-2547.
[55]MARTINS VIVIANA,GARCIA ANA,et al.Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes[J].Plant Physiology and Biochemistry,2020,150:49-55.
[56]BANNA M F,LOAY A A.Evaluation berries shattering phenomena of ‘Flame seedless vines grafted on different rootstocks during shelf life[J].Scientia Horticulturae,2019,246:51-56.
[57]KISHIMOTO M,YAMAMOTO T,KOBAYASHI Y.Effects of lateral or secondary induced shoot use on number of bunches and fruit quality in forcing cultivation by current shoot cutting and flower cluster removal to shift grape ripening to a cooler season[J].The Horticulture Journal,2022,91(2):169-175.
[58]POU A,BALDA,ALBACETE,et al.Forcing vine regrowth to delay ripening and its association to changes in the hormonal balance[J].Vitis (Special Issue),2019,58:95-101.
[59]高宇,袁华璐,缪榕,等.葡萄与葡萄酒中细胞壁的研究进展[J].中外葡萄与葡萄酒,2020(6):54-59.
[60]MARTINEZ-LAPUENTE L,GUADALUPE Z,AYESTARAN B,et al.Ultrasound treatment of crushed grapes: effect on the must and red wine polysaccharide composition[J].Food Chemistry,2021,356:129669.
[61]MARTINEZ L L,GUADALUPE Z,PEREZ-PORRAS P,et al.Effect of sonication treatment and maceration time in the extraction of polysaccharide compounds during red wine vinification[J].Molecules,2021,26(15):4452.
[62]GAO Y,FANGEL J U,WILLATS W G T,et al.Tracking polysaccharides during white winemaking using glycan microarrays reveals glycoprotein-rich sediments[J].Food Research International,2019,123:662-673.
[63]MARTINEZ-LAPUENTE L,GUADALUPE Z,HIGUERAS M,et al.Effect of pre-fermentative treatments on polysaccharide composition of white and rosé musts and wines[J].Journal of Agricultural and Food Chemistry,2023,72(4):1928-1937.
[64]GAO Y,FANGEL J U,WILLATS W G T,et al.Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods[J].Carbohydrate Polymers,2015,133:567-577.
[65]GIL M,KONTOUDAKIS N,GONZALEZ E,et al.
Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of cabernet sauvignon and tempranillo wines[J].Journal of Agricultural and Food Chemistry,2012,60(32):7988-8001.
[66]DOCO T,WILLIAMS P,CHEYNIER A V.Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition[J].Journal of Agricultural and Food Chemistry,2007,55(16):6643-6649.
[67]MARTINEZ-LAPUENTE L,GUADALUPE Z,AYESTARAN B,et al.Effects of combining high power ultrasound and enological enzymes on the composition of polysaccharides in red wine[J].LWT,2022,170:114060.
[68]CHOLET C,DELSART C,PETREL M,et al.Structural and biochemical changes induced by pulsed electric field treatments on cabernet sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides[J].Journal of Agricultural and Food Chemistry,2014,62(13):2925-2934.