APP下载

TFT-LCD用黑色光刻胶材料对曝光过程Mark读取的影响

2023-08-16李吉张霞廖昌谢忠憬尹勇明孟鸿

液晶与显示 2023年8期
关键词:光刻胶对位基板

李吉, 张霞, 廖昌, 谢忠憬, 尹勇明, 孟鸿

(1.北京大学 深圳研究生院, 广东 深圳 518055;2.北京大学 材料科学与工程学院, 北京 100871;3. 深圳北理莫斯科大学, 广东 深圳 518172;4.TCL华星光电技术有限公司, 广东 深圳 518132)

1 引言

薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display, TFT-LCD)[1-5]凭借高分辨率、低功耗、使用寿命长、成本低廉、尺寸可调等诸多优点成为当前市场绝对主流的显示面板产品,在电视、笔记本电脑、平板电脑、投影仪、车载显示、智能手机、可穿戴设备、智能家居等众多领域具有广泛的应用前景,尤其在电视为代表的大尺寸显示领域,TFT-LCD仍然占据着80%以上的市场份额。现阶段,全球TFT-LCD产业发展成熟,近5年来产值较为稳定,在1 300亿美元上下浮动,其中中国是全球最大的TFT-LCD生产国。2021年,我国拥有全球60%以上的液晶面板产能,居全球第一,预计2025年中国大陆地区产能将占全球总产能的75%。

然而,我国TFT-LCD产业大而不强,包括光刻胶在内的众多上游材料仍处于“卡脖子”状态[6-8]。光刻胶[9-10]作为高技术壁垒的材料,长期被垄断,日韩台厂商的市场占有率高达90%。随着全球面板产能向中国大陆转移,国内彩色光刻胶需求快速增长,预计2022年我国彩色光刻胶需求量为1.9万吨,面板类光刻胶需求预计高达15.6亿美金。在中美贸易摩擦、国外贸易保护主义盛行的情况下,光刻胶等关键核心材料技术的缺失将导致整个新型显示行业的瘫痪,光刻胶国产化刻不容缓。显示面板应用的光刻胶主要分为黑色光刻胶、彩色光刻胶、正性光刻胶等[11-19],本文主要针对黑色光刻胶展开深入研究。

在TFT-LCD中,黑色膜柱(Black Photo Spacer,BPS)技术因其可以节省黑色矩阵(Black Matrix,BM)制程、缩短工艺时间,进而降低面板生产成本受到各大面板厂的广泛关注。BPS技术以主、副膜柱设计取代传统PS(Photo Spacer),同时采用黑色挡光材料作为面板遮光矩阵取代传统BM。BPS材料一般采用负型光阻,根据特性的不同,BPS设计分为两段式和三段式两种。两段式的BPS一般采用两种透过率的掩膜版(Twotone Mask)技术,形成主、副膜柱有高度差的区域。这种设计较为简单,材料也相对较为成熟,因无面内和面外的大面积遮光要求,适用于对对比度要求不高的IPS技术。

三段式BPS一般采用多种透过率的掩膜版(Muti-tone Mask)技术,形成3个具有不同高度差的区域。这种BPS材料需要同时考虑多种透过率带来的固化差异和热回流效应,显影时间很长,所以材料制程性难度很大。因此,我们在设计时考虑使用RB色阻的叠层形成阶梯差,减少多种透过率对材料固化特性的影响,从而降低材料的开发难度。在这种结构下,BPS材料位于阵列基板的最后一道制程,需要采用上一道制程的金属层作为对位标记。然而,由于BPS是一种遮光材料,因此涂布BPS后CCD将难以透过BPS抓取到用于对位的金属标。本文通过使用有机-无机混合颜料取代有机黑颜料,在红外波段可获得接近90%透过率,满足对位需求;同时固化成型后可获得1.2/μm光学密度,产品对比度达5 920,与非BPS产品对比度5 900相当。

2 曝光机设备的构成及对位工作原理

2.1 曝光机设备的硬件构成

图1为曝光机对位Mark读取系统原理图,主要由照明子系统、光学成像子系统、图像采集子系统以及计算机等组成。照明子系统由光源、光源控制器构成。光学成像子系统由半透镜和物镜组成。图像采集子系统由CCD相机和图像采集卡等构成。进行对位时,光线由照明子系统光源发出,经由半透镜和物镜,穿过掩膜版达到基板表面,并反射基板表面的光线,经由物镜、半透镜传递至中继透镜以扩大视场。图像数据由成像系统CCD获取,由软件进行对位准确性判定。

图1 曝光过程对位Mark读取原理图Fig.1 Illustration of Mark reading during exposure

2.2 BPS对位工作原理

在BPS技术的曝光对位过程中,上光源在穿过掩膜版到达基板表面时,需透过黑色的BPS材料抓取基板上的金属标来对位。基板上的对位标能否被准确识别,取决于涂膜的透过率。BPS影响曝光对位过程的基本工作原理如图2所示。

3 实验与测试

3.1 曝光设备灯源

本文使用2种曝光机实验设备:一种是NSK厂商实验室曝光机,光源可以选择单一波长;另一种是NSK厂商提供的量产线设备,光源主波长为400 nm、600 nm、650 nm及大于700 nm 4种。

3.2 BPS材料调整实验设计

本文通过设计不同颜料组成的BPS材料以获得不同遮光度的BPS材料,其组成说明如下:

A BPS:有机黑与蓝色颜料混合组成。设计思路:短波无透过率,需要使用较多长波长光引发剂。因为300~400 nm感光波段光吸收极低,所以固化速度慢,材料显影时破膜时间超长,显影制程需要≥90 s的显影时间。

B BPS:有机颜料与无机炭黑混合组成。设计思路:BPS短波波段(300~400 nm)透过率变高,吸收效率提升,可使用短波长高感光性引发剂。材料固化速率快,显影时破膜时间也相应缩短,利于产线显影站点的产能提升。

3.3 实验表征方法

实验设备主要有EUV清洗机、旋涂机、真空干燥机台、预烘烤热台、曝光机、显影机以及烘箱,在实验室使用黄光工艺对BPS材料固化成型。

Lambda MCPD用于穿透率量测,其工作原理如图3所示。

图3 MCPD机台的分光系统Fig.3 Spectral system of MCPD

表征遮光度的指标光学密度OD(Optical Density)为OD=-lgT。

使用OLYMPUS光学显微镜(OM)对BPS固化成型后的形貌进行观察。使用日本电子JEOL电子扫描显微镜(SEM)对BPS固化成型后形貌进行观察。使用CS2000光谱量测仪获取面板亮度数据,对比度定义为:

4 结果与讨论

4.1 对位标读取实验

在带有金属标的基板上,分别涂布4.0 μm和4.5 μm厚度的A BPS 材料,进行金属标读取实验。图4(a)为膜厚4.0 μm读取金属标图像,图像读取成功,但清晰度未达到100%;图4(b)为膜厚4.5 μm读取金属标图像,图像读取失败,可判定A BPS厚度为4.0 μm对应的透过率为金属标可读的临界值。

图4 不同厚度A BPS对位Mark的读取图像。(a) 4.0 μm;(b) 4.5 μm。Fig.4 Photographs of Mark reading during exposure of A BPS with different thickness. (a) 4.0 μm;(b) 4.5 μm.

将A BPS厚度为4.0 μm和4.5 μm的色片分别进行MCPD穿透率量测,如图6所示。结果表明,该材料在曝光机主波长400,600,650 nm下的透过率几乎为0;而在780~1 000 nm红外波段,NG样品最大穿透率<23%,而OK样品最大穿透率接近26%,因而可定义780~1 000 nm最小穿透率需≥26%才能保证成功读取Mark图像。

因A BPS OD为1 μm-1,膜厚设定低于3.5 μm,产品遮光度有不达规格造成面内漏光的风险,同时因金属标读取处于临界状态,有生产不稳定的风险,需进一步调整BPS透过率以获得780~1 000 nm红外波段的更高透过率。

4.2 BPS材料调整

为了保证材料在可见光区的遮光性能同时提高材料在红外波段的透光率,从而实现有效的挡光效果及精准的Mark读取,进一步设计了新款的BPS材料,材料组分如表1所示。旧颜料体系为A BPS,新颜料体系选择橙色、蓝色和紫色有机颜料组合为黑色,并使用炭黑增加遮光度。

表1 不同颜料体系的BPS材料Tab.1 BPS materials with different type pigment

基于B BPS材料,同样制备了4.0 μm和4.5 μm两个厚度的薄膜,并对其穿透性能进行了表征,如图5所示。透过率频谱结果显示,新型BPS材料在780~1 000 nm红外波段的透过率有较大提升,在940 nm的透过率值接近90%,远大于旧型BPS,同时光学密度(OD)可获得相应提升,达1.2~1.5 μm-1。

图5 不同BPS材料的穿透率频谱Fig.5 Transmittance of Mark reading different BPS

4.3 灯源调整

使用新型BPS材料在实验室对不同波长的红外光源进行Mark读取测试,光源波长越短,读取清晰度越高,如图6所示。原因为波长越短,穿透BPS遮光层的能力越强,这也为未来曝光机设备灯源改造的选择提供了重要参考:(1)灯源波长尽量选择>780 nm,以免在可见光内期望较高穿透率影响面内漏光;(2)在>780 nm的波长范围内,波长应尽可能短,以获得较高的BPS膜层的穿透力。此外,短波长光引发剂经过BPS层不会发生光的饶射,主要利于表面自由基反应;长波长光引发剂经过BPS层会发生光的饶射,主要利于底部反应。

图6 使用不同灯源的对位实验Fig.6 Mark reading using different light source

4.4 量产线对位实验

使用新型BPS用于量产线测试,成功实现了精准对位,如图7所示。Mark读取未出现延时,说明新型BPS材料在>780 nm波段更高的穿透率对提升Mark读取有效。

图7 新型BPS的产线对位结果Fig.7 Mark reading result on production line

进一步地,对新型BPS形貌进行分析,结果如图8所示。光学显微镜(OM)与电子扫描显微镜(SEM)图显示,曝光固化后膜层形貌完整,同时具备BM遮光和PS支柱作用,达到了基本的开发目标。

图8 B BPS堆叠成型形貌图。(a)OM图;(b)SEM截面图。Fig.8 Morphology of B BPS. (a) Top-view of optical micrograph; (b) Cross-section of SEM image.

4.5 产品光学评估

进一步使用CS2000对BPS UD无边框产品对比度进行量测,结果如表2所示。测试结果表明,新型BPS满足产品遮光特性,面内对比度达到量产规格,下一步将对该技术进行量产导入验证。

表2 不同类型面板产品光学对比度Tab.2 Contrast value of different display products

5 结论

BPS的透过率低是导致曝光过程中Mark读取失败的关键因素。NSK曝光机对位灯源波长位于780~1 000 nm红外区域,在该波段BPS材料透过率低于23%时,对位失败。通过使用有机-无机混合颜料组成取代有机黑与蓝色颜料混合组成,在红外波段可获得接近90%的透过率,满足对位需求,固化成型后可获得1.2/μm的光学密度,以此制作的BPS产品对比度达5 920,与非BPS产品的5 900表现相当,满足产品遮光特性需求,具备较高的应用潜力。

猜你喜欢

光刻胶对位基板
内嵌陶瓷电路板的PCB 基板制备及其LED 封装性能
以“对位变奏思维及模式”观兴德米特“天体音乐”
国内外光刻胶发展及应用探讨
TFT-LCD 四次光刻工艺中的光刻胶剩余量
国内外集成电路光刻胶研究进展
光刻胶:国产化势不可挡
多层基板
打印机基板大型注塑模具设计
一种跨层盲孔制作及对位方式研究
十二音对位