APP下载

抗菌药物致肝脏毒性的研究进展

2023-04-29凌亚豪廖乐乐靳洪涛时涛

国外医药抗生素分册 2023年1期
关键词:发病机制抗菌药物合理用药

凌亚豪 廖乐乐 靳洪涛 时涛

摘要:药物性肝损伤(DILI)是指各类药物及其代谢产物和辅料等所诱发的肝损伤,是临床药源性疾病之一。在DILI 相关研究中,抗菌药物是最为常见的药物类型。随着抗菌药物在临床上日益广泛应用,抗菌药物相关性肝损伤事件发生也不断增加,严重时可危及生命。本文通过对不同类型抗菌药物致肝脏毒性的机制及临床特点等相关研究进行综述,旨在深入了解抗菌药物致肝脏毒性的机制,为加强抗菌药物致肝损伤的防治及临床安全合理应用提供参考。

关键词:抗菌药物;肝脏毒性;发病机制;合理用药;药物性肝损伤;研究进展

中图分类号:R978.1         文献标志码:A         文章编号:1001-8751(2023)01-0039-06

Research Progress of Antimicrobial Agents Induced Hepatotoxicity

Ling Ya-hao1,   Liao Le-le1,   Jin Hong-tao2,3,   Shi Tao1

(1 Department Department of Pharmacy, Peoples Hospital of Longhua,   Shenzhen 518109;

2 New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences,    Beijing 100050;

3 Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd.,   Beijing 100176)

Abstract: Drug-induced liver injury (DILI) is a clinical drug-induced disease induced by various drugs and drug metabolites and excipients. In DILI related studies, antibacterial drugs are the most common type of drugs. With the increasing use of antibacterial drugs in clinical practice, the incidence of liver injury related to antibacterial drugs is also increasing, which can endanger life in serious cases. This article reviews the mechanism and clinical characteristics of liver toxicity caused by different types of antibacterial drugs, aiming to deeply understand the mechanism of liver toxicity caused by antibacterial drugs, and provide reference for strengthening the prevention and treatment of liver injury caused by antibacterial drugs and clinical safe and reasonable application.

Key words: antimicrobial agents;   liver toxicity;   pathogenesis;   rational drug use;  drug-induced liver injury;  research progress

1 前言

肝脏作为人体最大的代谢器官,具有代谢、解毒、分泌和排泄胆汁及造血等重要功能。同时,肝脏也是机体进行药物代谢、生物转化和清除的重要场所。抗菌药物指在低浓度时具有杀菌或抑菌活性的各种抗生素及化学合成药物。抗菌药物进入机体后,会不同程度对肝脏功能产生影响。在药物性肝损伤(Drug-induced liver injury,DILI)相关研究中,抗菌药物是最为常见的药物类型[1]。随着抗菌药物在临床上日益广泛应用,抗菌药物相关性肝损伤事件发生也不断增加,严重时可导致急性肝衰竭甚至死亡[2-3]。大多数药物引起的肝毒性以不可预测的方式发生,相关流行病学研究显示药物性肝损伤的发病率一般为1/10万~20/10万[4-6]。我国一项纳入了25 927例药物性肝损伤患者的回顾性研究显示,一般人群的DILI发生率为23.80/10万人[2]。

目前,DILI缺乏特异性、敏感性的诊断标志物。DILI的诊断方法基本上是通过追溯可疑用药史,排除其他病因,因此DILI的诊断具有很大挑战性。近年来,国内外研究者对抗菌药物致肝脏毒性的临床特点、发病机制和防治等问题不断进行研讨以及制定了相关的诊疗指南[1, 7-10]。由于我国人口基数大,抗菌药物种类繁多,临床应用抗菌药物广泛,因此抗菌药物相关性肝损伤发病率有逐年升高趋势[11]。关于抗菌药物致肝脏毒性的机制尚未阐明。本文主要综述抗菌药物致肝脏毒性机制的研究进展,以期为加强抗菌药物致肝损伤的防治及临床安全合理应用提供参考。

2 DILI的分类、影响因素及相关研究进展

根据发病机制,DILI可分为直接肝损伤、特异质肝损伤和间接肝损伤,而抗菌药物相关性肝损伤主要属于特异质型[8, 10]。特异质肝损伤具有低发生率、不可预测性、不具有剂量依赖性,并且不可在动物模型中复制的特点[8]。特异质肝损伤的表型一般为急性肝细胞型肝炎、混合型或淤胆型肝炎、单纯性胆汁淤积、慢性肝炎和肝衰竭等[1]。

根据病程分型,DILI可分为急性和慢性[12]。急性药物性肝损伤在临床上占比较高,少数可发展为慢性。一般肝脏炎症在6个月内可以消退,肝功能恢复至正常水平。慢性药物性肝损伤指肝脏炎症发生6个月后,相关血液学指标仍然持续异常或存在影像学和组织学门静脉高压或肝功能损伤证据[13]。

根据受损靶细胞,可将药物性肝损伤划分为肝细胞损伤型、胆汁淤积型和混合型[13]。(1)肝细胞损伤型:临床表现类似急性病毒性肝炎[5],丙氨酸氨基转移酶(Alanine aminotransferase,ALT)明显升高,病情进展迅速,常出现乏力、精神萎靡、食欲减退、恶心呕吐、黄疸进行性加重等症状,是急性肝衰竭的重要原因。主要组织学特征为肝细胞坏死、淋巴细胞和嗜酸性粒细胞浸润。常见药物为异烟肼、呋喃妥因、青霉素类、四环素类和喹诺酮类等[14]。(2)胆汁淤积型:临床表现为明显的黄疸和瘙痒,碱性磷酸酶(Alkaline phosphatase,ALP)水平升高,主要组织学特征为毛细胆管型胆汁淤积[15-16]。常见药物为大环内酯类、阿莫西林/克拉维酸钾、头孢菌素类和抗真菌类等[17-18]。(3)混合型:可由许多药物引起肝细胞型或淤胆型肝炎,临床表现常有黄疸,主要组织学特征为毛细胆管胆汁淤积伴肝细胞坏死和炎症细胞浸润[5]。常见药物为磺胺类、氟喹诺酮类、大环内酯类和阿莫西林/克拉维酸钾等[19-20]。

与药物性肝损伤相关因素主要有[10, 21-22]:(1)宿主因素(包括年龄、性别、种族、遗传学、免疫状态、代谢等)。一般而言,药物性肝损伤发病率会随着年龄的增长而增加,但这可能部分是由于随着年龄的增长而使用更多的药物所导致[4, 23]。据相关研究推测,药代动力学的改变或累积的线粒体功能障碍可能与老年患者更频繁地发生异烟肼相关的肝损伤有关[24-25]。高龄患者似乎对异烟肼和阿莫西林/克拉维酸钾肝毒性的风险增加,而年轻患者更容易因米诺环素而发生DILI[24, 26]。除了增加特定药物易感性之外,年龄似乎也对药物性肝损伤的表型有影响,年轻患者更常发生肝细胞损伤,而老年患者更容易出现胆汁淤积型损伤[27-28]。女性对特定抗菌药(如米诺环素和呋喃妥因)的易感性增加,且更易发生急性肝损伤[29]。研究表明女性患者在大环内酯类、氟氯西林、呋喃妥因等所致肝毒性事件中占比较高,而男性患者在阿莫西林/克拉维酸钾所致肝毒性事件中占比更高[24, 26, 30]。种族因素影响主要归因于不同种族人群中单核苷酸多态性(Single nucleotide polymorphisms,SNPs)的差异。药物性肝损伤网络(Drug-induced liver injury network,DILIN))显示,复方磺胺甲恶唑是非裔美国人发生肝损伤中最常见的可疑药物,而阿莫西林/克拉维酸钾是白人人群发生肝损伤的主要原因[31-32]。据研究报道[33],与药物代谢酶和转运蛋白相关的各种宿主遗传因素会增加DILI易感性。(2)药物(包括剂量和肝脏药物代谢、脂溶性、药物相互作用、特殊化学成分、线粒体危害、肝胆转运抑制)。研究发现由每日剂量 ≥ 50 mg 的药物诱发肝损伤的潜伏期明显短于由较低剂量服用的药物诱发的肝损伤[34]。除了剂量,肝脏药物代谢被认为会影响药物的肝毒性潜能[35]。关于药物脂溶性,研究显示较高的亲脂性药物可促进肝细胞的吸收,这可能导致反应性代谢物的量增加,从而增加 DILI 的潜在风险[36]。药物能够通过诱导、抑制或底物竞争来调节其他药物的代谢而影响 DILI 的易感性[37]。反应性代谢物可以改变细胞蛋白质的功能和结构,是DILI发病的已知风险因素[38]。(3)环境(酒精、饮食、咖啡、烟草、微生物)。经常饮酒可能是促进异烟肼等特定药物发生DILI 的潜在因素[10]。目前关于饮食因素、微生物因素、烟草使用和咖啡消费对DILI易感性的影响的研究数据有限,尚未被确定为人类 DILI 的真正危险因素[39-42]。

3 药物性肝损伤的作用机制及常见抗菌药代表

DILI的发病机制复杂,涉及宿主遗传、免疫和代谢因素以及药物和环境因素,是多种机制先后或共同作用的结果。根据抗菌药物相关性肝损伤的发病机制,可分为药物的直接肝毒性和特异质肝毒性作用。直接肝毒性是指药物对肝脏产生的直接损伤,具有发生率常见、剂量依赖性、可预测性、潜伏期短的特点。直接药物性肝损伤最常见的临床表型为急性肝坏死,表现为血清酶升高且不伴有黄疸。相关抗菌药如大环内酯类可能通过其在肝内的代谢产物与肝细胞蛋白结合进一步引发其他炎症反应或免疫损伤。微泡型脂肪变性(Microvesicular steatosis)和肝功能障碍的乳酸性酸中毒是药物直接肝毒性的另一表型,相关发病机制为线粒体毒性和有氧代谢衰竭,主要代表药物有利奈唑胺[43]和四环素[44]。

特异质肝毒性被认为是由宿主对药物或其代谢物的异常适应性免疫反应引起的,影响发生机制的因素包括药物代谢、遗传差异、药物介导免疫损伤等[9, 45]。(1)药物代谢异常机制:大部分药物进入机体后需要某种形式的生物转化才能被消除,该过程通常会形成反应性代谢物,这些代谢物可在易感细胞环境中导致共价结合半抗原或细胞应激,这可能引发或共同刺激适应性免疫反应的发展,从而导致DILI。药物在肝脏经细胞色素P450(CYP450)酶系的代谢后与还原型谷胱甘肽等蛋白结合促进排泄,若相关蛋白含量不足时,可产生肝毒性。(2)抗菌药物的肝毒性具有遗传多态性和免疫特异质性,个体间的基因差异可表现为药物代谢的多态性。研究表明[8],通过全基因组关联研究(Genome-wide association studies,GWAS)确定了DILI易感性相关的遗传多态性大多位于主要组织相容性复合体(Major histocompatibility complex,MHC)区域内,并与人类白细胞抗原(Human leukocyte antigen,HLA)等位基因相关。如氟氯西林引起的DILI与HLA-B*57:01和HLA-B*57:03位点相关[46-47],特比萘芬与HLA-A*33:01位点相关[18]。与其他自身免疫性疾病相关的非受体蛋白质酪氨酸磷酸酶22(Protein tyrosin phosphatase non-receptor 22,PTPN22)中的错义变体 (rs2476601) 似乎是跨多个种族和群体的全因DILI的危险因素[39]。(3)药物介导免疫损伤机制[48]:适应性免疫系统在特异质 DILI 的发病机制中起主要作用。适应性免疫系统可以被半抗原激活,导致 HLA 编码的主要组织相容性复合物 (MHC) 蛋白限制多肽加合物的呈递。在极少数情况下,药物可能直接与某些 MHC 分子或 T 细胞受体结合并激活免疫反应,通过细胞毒作用损伤肝细胞和胆管上皮细胞。或在某些情况下,药物或代谢物可能会改变 MHC 结合槽,从而导致多肽呈递方向错误。此外,药物介导的免疫反应还可以促进CD8+细胞毒性T淋巴细胞反应直接杀伤肝细胞或激活自然杀伤细胞(Natural killer cell,NK)及自然杀伤性T细胞(Natural killer T cells,NKT)介导抗体依赖细胞毒(Antibody-dependent cytotoxicity,ADCC)损伤肝细胞。

引起肝脏毒性的常见抗菌药包括: 阿莫西林/克拉维酸钾、呋喃妥因、异烟肼和磺胺类等。

3.1 阿莫西林/克拉维酸钾

阿莫西林/克拉维酸钾是目前在美国和欧洲引起临床明显性急性肝损伤的最常见药物。阿莫西林/克拉维酸钾引起的肝损伤通常是延迟性胆汁淤积型或混合型肝损伤,平均潜伏期为从治疗开始后的几天至长达8周,西班牙肝毒性登记处的一项研究显示,年轻患者主要是肝细胞模式,而老年患者与胆汁淤积/混合模式有关[49]。阿莫西林/克拉维酸钾致肝损伤相关的遗传多态性与HLA-A*02:01和HLA-DRB1*15:01位点相关[50]。最近一项研究表明[51],克拉维酸钾通过调节核因子红细胞2相关因子2 (Nuclear factor erythroid 2-related factor 2,NRF2)和胆汁酸受体(Farnesoid x receptor,FXR)信号传导下调了几种关键的胆道转运蛋白,从而可能促进肝内胆汁淤积。最重要的是,阿莫西林/克拉维酸钾通过增加的活性氧(Reactive oxygen species,ROS)生成和还原型谷胱甘肽(Reduced glutathione,GSH)的消耗可能会加重对胆汁淤积的肝损伤。

3.2 呋喃妥因

呋喃妥因是一种硝基呋喃类抗菌药,临床上可引起急性或慢性肝炎样综合征,严重并导致肝功能衰竭或肝硬化。呋喃妥因致肝损伤的模式通常是肝细胞性,可伴有黄疸、发烧、呕吐和皮疹等症状,特点是血清丙氨酸氨基转移酶(Alanine aminotransferase,ALT)和丙种球蛋白水平升高,并且抗核抗体(Antinuclear antibodies,ANA)和抗平滑抗体(Anti-smoothmuscle antibodies,ASMA)阳性。呋喃妥因的硝基还原代谢会产生有害的氧化自由基,从而损害肝细胞。呋喃妥因会导致药物性自身免疫样慢性肝损伤,相关研究表明与人类白细胞抗原相关基因位点(HLA-DR6 和HLA-DR2)相关[52-53]。

3.3 异烟肼

异烟肼目前仍是治疗结核病最常用的药物之一,尽管它会导致肝功能衰竭。异烟肼引起的肝毒性属于特异质肝损伤,常见的不良反应包括肠胃不适、恶心、发烧和皮疹,血液学特征为示丙氨酸氨基转移酶  (ALT) 和天冬氨酸氨基转移酶 (Aspartate aminotransferase,AST)水平升高。异烟肼引起肝损伤的原因被认为是其代谢的有毒中间体的积累。由异烟肼本身的生物活化产生的反应性代谢物已被证明可与肝脏大分子物质形成共价加合物,该代谢物的共价结合很可能导致免疫反应发生[54-55]。异烟肼致肝损伤相关的遗传多态性与HLA-C*12:02、HLA-B*52:01和HLA-DQA1*03:01位点相关[56-57]。一项使用蛋白质印迹和质谱分析的研究表明[54-55],异烟肼的反应性代谢物可以与肝蛋白上的多个赖氨酸残基发生反应。此外,异烟肼代谢中产生的肼可直接与肝细胞发生过氧化反应而诱发肝毒性[55, 58]。

3.4 磺胺类

磺胺类药物制剂包括磺胺嘧啶、磺胺多辛和磺胺异恶唑,以及包括柳氮磺胺吡啶和复方磺胺甲恶唑(TMP/SMZ,也称为复方新诺明)的组合制剂。磺胺类药物会引起特异质肝损伤,损伤的模式可以是肝细胞型或胆汁淤积型。磺胺类药物常见副作用包括腹泻、恶心、皮疹、头痛、关节痛和嗜酸性粒细胞增多或非典型淋巴细胞增多症,严重时可导致急性肝功能衰竭。TMP/SMZ致肝损伤相关的遗传多态性与HLA-A*34:02、HLA-B*14:01和HLA-B*27:02位点相关[59]。研究表明TMP/SMZ 引起特异质肝损伤具有药物过敏或超敏反应的特征,可能是通过其代谢为毒性、反应性或抗原性代谢物所引起[5, 32]。

3.5 米诺环素

米诺环素是一种四环素类抗生素,临床上会引起特异质、间接肝损伤,表型分为急性肝炎和慢性肝炎。米诺环素所致急性肝炎类似于急性病毒性肝炎,肝损伤通常是自限性的,具有免疫过敏特征,表现为发热、皮疹、嗜酸性粒细胞增多和血清酶水平升高[60]。米诺环素所致慢性肝炎的潜伏期为数月至数年,常见的表现是自身免疫性肝炎样综合征,ALT升高伴胆红素升高[61-62]。米诺环素引起的肝毒性可能与免疫学有关,由肝细胞或肝脏中存在的米诺环素代谢产物的自身免疫反应介导[14, 61-62]。此外,米诺环素致肝损伤相关的遗传多态性与HLA-B*35:02位点相关[63]。

4 小结和展望

抗菌药物相关性肝损伤是临床上一种重要的肝病形式,其发生率有待进一步的研究。不同类型的抗菌药物所致肝脏毒性的类型和表型也不一样,这对于疾病的诊断尤其具有挑战性。本文主要从药物代谢、遗传差异、药物介导免疫损伤等方面对抗菌药物相关性肝损伤发病机制进行总结。目前关于抗菌药物相关性肝损伤发病机制尚未完全阐明。未来关于DILI发病机制相关问题还有待深究,包括遗传多态性、药物基因组学、人类白细胞抗原(HLA)、适应性免疫攻击、氧化应激、细胞死亡、能量代谢、肝衍生细胞系与DILI研究等。

关于DILI的防治,及时停用可疑药物,避免再次使用同类药物仍是最重要的措施。目前我国研发的异甘草酸镁注射液(天晴甘美)已被批准治疗急性DILI,该药主要成分是异甘草酸镁,可显著降低ALT和总胆红素水平,改善病情[64]。研究表明基因检测可用于排除 DILI 的诊断或者在多种药物可能导致 DILI 的临床情况下排除特定药物作为致病因子[22]。未来在应用抗菌药物前,或许可以通过检测该等位基因的位点,从而达到预防DILI发生。

综上,本文主要对不同类型抗菌药物致肝脏毒性的机制及临床特点等相关研究进行综述,警示大家重视抗菌药物致肝脏毒性的风险,促进临床安全合理用药。

参 考 文 献

Fontana R J, Liou I, Reuben A, et al. AASLD practice guidance on drug, herbal and dietary supplement induced liver injury [J]. Hepatology, 2022:1-29.

Shen T, Liu Y, Shang J, et al. Incidence and etiology of drug-induced liver injury in mainland China [J]. Gastroenterology, 2019, 156(8): 2230-2241.

Chalasani N P, Hayashi P H, Bonkovsky H L, et al. ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury [J]. Am J Gastroenterol, 2014, 109(7): 950-966.

Bj?rnsson E S, Bergmann O M, Bj?rnsson H K, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland [J]. Gastroenterology, 2013, 144(7): 1419-1425.

Chalasani N, Bonkovsky H L, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study [J]. Gastroenterology, 2015, 148(7): 1340-1352.

雷晓红, 李静, 唐洁婷, 等. EASL临床实践指南简介:药物性肝损伤 [J]. 肝脏, 2019, 24(04): 339-348.

Chalasani N P, Maddur H, Russo M W, et al. ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury [J]. Am J Gastroenterol, 2021, 116(5): 878-898.

Hoofnagle J H, Bj?rnsson E S. Drug-induced liver injury—types and phenotypes [J]. N Engl J Med, 2019, 381(3): 264-273.

Yu YC, Mao YM, Chen CW, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury [J]. Hepatol Int, 2017, 11(3): 221-241.

Andrade R J, Aithal G P, Bj?rnsson E S, et al. EASL clinical practice guidelines: drug-induced liver injury [J]. J Hepatol, 2019, 70(6): 1222-1261.

宋芳娇, 翟庆慧, 贺庆娟, 等. 2 820例药物性肝损伤临床分析 [J]. 中华肝脏病杂志, 2020, 28(11): 954-958.

Medina-Caliz I, Robles-Diaz M, Garcia-Mu?oz B, et al. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury [J]. J Hepatol, 2016, 65(3): 532-542.

中华医学会, 中华医学会杂志社, 中华医学会消化病学分会, 等. 药物性肝损伤基层诊疗指南(2019年) [J]. 中华全科医师杂志, 2020, 19(10): 868-875.

de Boer Y S, Kosinski A S, Urban T J, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury [J]. Clin Gastroenterol Hepatol, 2017, 15(1): 103-112.

Delemos A S, Ghabril M, Rockey D C, et al. Amoxicillin–clavulanate-induced liver injury [J]. Dig Dis Sci, 2016, 61(8): 2406-2416.

Bonkovsky H L, Kleiner D E, Gu J, et al. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements [J]. Hepatology, 2017, 65(4): 1267-1277.

Alqahtani S A, Kleiner D E, Ghabril M, et al. Identification and characterization of cefazolin-induced liver injury [J]. Clin Gastroenterol Hepatol, 2015, 13(7): 1328-1336.

Fontana R J, Cirulli E T, Gu J, et al. The role of HLA-A* 33: 01 in patients with cholestatic hepatitis attributed to terbinafine [J]. J Hepatol, 2018, 69(6): 1317-1325.

Orman E S, Conjeevaram H S, Vuppalanchi R, et al. Clinical and histopathologic features of fluoroquinolone-induced liver injury [J]. Clin Gastroenterol Hepatol, 2011, 9(6): 517-523.

Martinez M A, Vuppalanchi R, Fontana R J, et al. Clinical and histologic features of azithromycin-induced liver injury [J]. Clin Gastroenterol Hepatol, 2015, 13(2): 369-376.

Yeboah‐Korang A, Fontana R J. Drug‐induced liver injury [M]. Yamada's Textbook of Gastroenterology, 2022: 1878-1888.

Devarbhavi H, Aithal G, Treeprasertsuk S, et al. Drug-induced liver injury: asia pacific association of study of liver consensus guidelines [J]. Hepatol Int, 2021, 15(2): 258-282.

Hoofnagle J H, Navarro V J. Drug-induced liver injury: icelandic lessons [J]. Gastroenterology, 2013, 144(7): 1335-1336.

Fountain F F, Tolley E, Chrisman C R, et al. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic [J]. Chest, 2005, 128(1): 116-123.

Boelsterli U A, Lee K K. Mechanisms of isoniazid‐induced idiosyncratic liver injury: Emerging role of mitochondrial stress [J]. J Gastroenterol Hepatol, 2014, 29(4): 678-687.

George N, Chen M, Yuen N, et al. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury [J]. Regul Toxicol Pharmacol, 2018, 94: 101-107.

Lucena M I, Andrade R J, Kaplowitz N, et al. Phenotypic characterization of idiosyncratic drug‐induced liver injury: the influence of age and sex [J]. Hepatology, 2009, 49(6): 2001-2009.

Hunt C M, Yuen N A, Stirnadel-Farrant H A, et al. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database [J]. Regul Toxicol Pharmacol, 2014, 70(2): 519-526.

deLemos A S, Foureau D M, Jacobs C, et al. Drug-induced liver injury with autoimmune features [J]. Semin Liver Dis, 2014, 34(2): 194-204.

Di Paola F, Molleston J P, Gu J, et al. Antimicrobials and anti-epileptics are the leading causes of idiosyncratic drug induced liver injury in American children [J]. J Pediatr Gastroenterol Nutr, 2019, 69(2): 152-159.

Fontana R J, Hayashi P H, Gu J, et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset [J]. Gastroenterology, 2014, 147(1): 96-108.

Chalasani N, Reddy K R K, Fontana R J, et al. Idiosyncratic drug induced liver injury in African-Americans is associated with greater morbidity and mortality compared to caucasians [J]. Am J Gastroenterol, 2017, 112(9): 1382-1388.

Khoury T, Rmeileh A A, Yosha L, et al. Drug induced liver injury: review with a focus on genetic factors, tissue diagnosis, and treatment options [J]. J Clin Transl Hepatol, 2015, 3(2): 99-108.

Vuppalanchi R, Gotur R, Reddy K R, et al. Relationship between characteristics of medications and drug-induced liver disease phenotype and outcome [J]. Clin Gastroenterol Hepatol, 2014, 12(9): 1550-1555.

Lammert C, Bjornsson E, Niklasson A, et al. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events [J]. Hepatology, 2010, 51(2): 615-620.

Chen M, Suzuki A, Borlak J, et al. Drug-induced liver injury: Interactions between drug properties and host factors [J]. J Hepatol, 2015, 63(2): 503-514.

Suzuki A, Yuen N A, Ilic K, et al. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase? [J]. Regul Toxicol Pharmacol, 2015, 72(3): 481-490.

Weaver R J, Betts C, Blomme E A, et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury: Industry-led perspective from EFPIA members of the EU innovative medicines initiative drug liver injury project, MIP DILI [J]. Expert Opin Drug Met, 2017, 13(7): 767-782.

Cirulli E T, Nicoletti P, Abramson K, et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury [J]. Gastroenterology, 2019, 156(6): 1707-1716.

Chomchai S, Chomchai C. Being overweight or obese as a risk factor for acute liver injury secondary to acute acetaminophen overdose [J]. Pharmacoepidem Dr S, 2018, 27(1): 19-24.

Schr?der T, Schmidt K J, Olsen V, et al. Liver steatosis is a risk factor for hepatotoxicity in patients with inflammatory bowel disease under immunosuppressive treatment [J]. Eur J Gastroenterol Hepatol, 2015, 27(6): 698-704.

Fontana R J. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives [J]. Gastroenterology, 2014, 146(4): 914-928.

Su E, Crowley K, Carcillo J A, et al. Linezolid and lactic acidosis: a role for lactate monitoring with long-term linezolid use in children [J]. Pediatr Infect Dis J, 2011, 30(9): 804-806.

Tujios S, Fontana R J. Mechanisms of drug-induced liver injury: from bedside to bench [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(4): 202-211.

Mosedale M, Watkins P B. Understanding idiosyncratic toxicity: lessons learned from drug-induced liver injury [J]. J Med Chem, 2020, 63(12): 6436-6461.

Daly A K, Donaldson P T, Bhatnagar P, et al. HLA-B* 5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin [J]. Nat Genet, 2009, 41(7): 816-819.

Nicoletti P, Aithal G P, Chamberlain T C, et al. Drug‐induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles [J]. Clin Pharmacol Ther, 2019, 106(1): 245-253.

Andrade R J, Chalasani N, Bj?rnsson E S, et al. Drug-induced liver injury [J]. Nat Rev Dis Primers, 2019, 5(1): 1-22.

Lucena M I, Andrade R J, Fernández M C, et al. Determinants of the clinical expression of amoxicillin‐clavulanate hepatotoxicity: a prospective series from Spain [J]. Hepatology, 2006, 44(4): 850-856.

Lucena M I, Molokhia M, Shen Y, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and Ⅱ alleles [J]. Gastroenterology, 2011, 141(1): 338-347.

Petrov P D, Soluyanova P, Sánchez-Campos S, et al. Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: role of NRF2 and FXR pathways [J]. Food Chem Toxicol, 2021, 158: 112664.

Sakaan S A, Twilla J D, Usery J B, et al. Nitrofurantoin-induced hepatotoxicity: a rare yet serious complication [J]. South Med J, 2014, 107(2): 107-113.

Stine J G, Northup P G. Autoimmune-like drug-induced liver injury: a review and update for the clinician [J]. Expert Opin Drug Metab Toxicol, 2016, 12(11): 1291-1301.

Metushi I G, Nakagawa T, Uetrecht J. Direct oxidation and covalent binding of isoniazid to rodent liver and human hepatic microsomes: humans are more like mice than rats [J]. Chem Res Toxicol, 2012, 25(11): 2567-2576.

Meng X, Maggs J L, Usui T, et al. Auto-oxidation of isoniazid leads to isonicotinic-lysine adducts on human serum albumin [J]. Chem Res Toxicol, 2015, 28(1): 51-58.

Nicoletti P, Aithal G P, Bjornsson E S, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study [J]. Gastroenterology, 2017, 152(5): 1078-1089.

Nicoletti P, Devarbhavi H, Goel A, et al. Genetic risk factors in drug‐induced liver injury due to isoniazid‐containing antituberculosis drug regimens [J]. Clin Pharmacol Ther, 2021, 109(4): 1125-1135.

Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid‐induced hepatotoxicity: then and now [J]. Br J Clin Pharmacol, 2016, 81(6): 1030-1036.

Li Y J, Phillips E J, Dellinger A, et al. Human Leukocyte Antigen B* 14: 01 and B* 35: 01 Are Associated with Trimethoprim‐Sulfamethoxazole Induced Liver Injury [J]. Hepatology, 2021, 73(1): 268-281.

Casella G, Villanacci V, Di Bella C, et al. Acute hepatitis caused by minocycline [J]. Rev Esp Enferm Dig, 2010, 102(11): 667-668.

Harmon E G, McConnie R, Kesavan A. Minocycline-induced autoimmune hepatitis: a rare but important cause of drug-induced autoimmune hepatitis [J]. Pediatr Gastroenterol Hepatol Nutr, 2018, 21(4): 347-350.

Shah J, Shahidullah A, Liu Y. Drug-induced autoimmune hepatitis in a patient treated with minocycline: a rare adverse effect [J]. Case Rep Gastroenterol, 2018, 12(2): 447-452.

Urban T J, Nicoletti P, Chalasani N, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B* 35: 02 as a risk factor [J]. J Hepatol, 2017, 67(1): 137-144.

Wang Y, Wang Z, Gao M, et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug‐induced liver injury: a phase Ⅱ trial [J]. Liver Int, 2019, 39(11): 2102-2111.

猜你喜欢

发病机制抗菌药物合理用药
微量激素联合抗菌药物治疗细菌性角膜炎的疗效观察
肝性心肌病研究进展
糖尿病肾病治疗的研究进展
痛风免疫遗传学机制研究进展
浅析中医中风病的病因病机