APP下载

幂指对大小比较四妙招

2023-02-11邱红英吴海军

中学数学杂志 2023年1期
关键词:底数交点零点

邱红英 吴海军

江苏省镇江市丹徒高级中学

1 妙招一:引入媒介,巧取中间值

A.a

C.b

故选:A.

2 妙招二: 构造函数,单调性比大小

A.a

C.c

解析:设f(x)=ln(1+x)-x(x>-1).

当x∈(-1,0)时,f′(x)>0;

当x∈(0,+∞)时,f′(x)<0.

所以,函数f(x)=ln(1+x)-x在(-1,0)上单调递增,在(0,+∞)上单调递减.

设g(x)=xex+ln(1-x)(0

令h(x)=ex(x2-1)+1,0

所以g(0.1)>g(0)=0,即0.1e0.1>-ln 0.9.

所以a>c.

故选:C.

A.a

C.b

解析:由a=2ln 1.01=ln 1.0201,b=ln 1.02,可得a>b.

于是g(t)=2ln(t2+3)-t+1-2ln 4,则

g(t)>g(1)=2ln 4-1+1-2ln 4=0.

故f(x)>0,可得a>c.

故选:B.

方法提炼:本组题目难度较大,关键在于将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小.这样的问题,凭借近似估值计算往往是无法解决的.

3 妙招三:数形结合,交点定大小

例4a,b,c依次表示函数f(x)=2x+x-2,g(x)=3x+x-2,h(x)=lnx+x-2的零点,则a,b,c的大小顺序为( ).

A.c

C.a

解法2:几何法.因为a,b,c分别是函数f(x)=2x+x-2,g(x)=3x+x-2,h(x)=lnx+x-2的零点.所以a,b,c分别是函数f1(x)=2x,g1(x)=3x,h1(x)=lnx与m(x)=-x+2图象交点的横坐标.由图1可得b

图1

方法提炼:指数、对数型超越函数零点大小的比较,利用转化与化归、函数与方程、数形结合思想,将零点问题转化为函数图象的交点问题,通过作图进行大小比较.这种几何法的解题速度比较快.

4 妙招四:应考绝招,代值求大小

例5已知a=log0.20.02,b=log660,c=ln 6,则下列选项正确的是( ).

A.b

C.c

解法1:由a=log0.20.02=1-log0.210=1+log510,b=log660=1+log610>1+log66=2,及log510>log610,得a>b>2.又c=ln 6

解法2::代值近似计算.

方法提炼:我们在题目中常见含有ln 2,ln 3,ln 5等值的大小比较问题,有时还是单选压轴题,如果能记住常见的这些对数值,就可以独辟蹊径,很快得出结论.

常用必备对数值有:

ln 2≈0.70,ln 3≈1.10,ln π≈1.14,ln 5≈1.60,ln 6≈1.80,ln 7≈1.95.

5 方法总结

由以上各例可知,指、对、幂大小比较的常用方法有:

(1)底数相同,指数不同时,如ax1和ax2,利用指数函数y=ax的单调性比较大小.

(3)底数相同,真数不同时,如logax1和logax2,利用对数函数y=logax的单调性比较大小.

(4)底数、指数、真数都不同时,寻找中间变量0,1或者其他能判断大小关系的中间量,借助中间量进行大小关系的判定.

(5)转化为两函数图象交点的横坐标.

(6)估算法.

常用对数值有:

ln 2≈0.70;

ln 3≈1.10;

ln π≈1.14;

ln 6=ln 2+ln 3≈1.80;

希望大家在实际应用时灵活应变,选择最佳途径以达到事半功倍的效果.Z

猜你喜欢

底数交点零点
幂的大小比较方法技巧
同底数幂的乘法
如何比较不同底数的对数函数式的大小
比较底数不同的两个对数式大小的方法
2019年高考全国卷Ⅱ文科数学第21题的五种解法
一类Hamiltonian系统的Abelian积分的零点
阅读理解
借助函数图像讨论含参数方程解的情况
试析高中数学中椭圆与双曲线交点的问题
指数函数与幂函数图象的交点的探究性学习