“笔算有余数的除法”之错题引发的思考
2022-01-14伊秀枝
○伊秀枝
学生出错,除了跟年龄小、认知水平低、理解能力差等有关,还跟教师对教材重难点的把握及教学设计有直接关系。
一位二年级学生在笔算有余数的除法时,解题过程如下:
【错因分析】
学生竖式计算过程没有问题,商和余数的大小、位置都正确,说明学生会用乘法口诀笔算有余数的除法。错的是横等式的结果,原因有三种可能:
第一,在笔算加减法时,竖式最后的得数就是这道题的结果,受这种方法的负迁移影响,学生误把除法竖式最后的余数当成了整道题的结果。
第二,在认识有余数的除法算式时,学生没能在头脑中建立起清晰的表象,即“被除数÷除数=商……余数”。
第三,教师没有让学生仔细比对:有余数的除法和以前学过的除法有什么区别,余数应该怎么写,需要注意些什么;关于除法算式各部分的名称以及它的构成,没有让学生经历完整的建构过程。
【教学建议】
1.静态知识动态教。
有余数的除法要在学生动手操作——分东西的基础上开展教学。如:“用12 根小棒摆三角形,可以摆几个?13 根呢?14 根呢?”学生摆完后进行展示交流,根据学生的发言教师相机板书:12÷3=4(个),13÷3=4(个)……1(根),14÷3=4(个)……2(根)。学生在动手拼摆中感受试商的过程,理解余数的含义,明白算理,知道有余数除法各部分的名称及单位名称的不同,会读写,会验算。由旧知“能平均分”过渡到新知“有剩余”,学生在不知不觉中就会把新旧知识及其计算方法联系起来,轻松掌握新知。
2.简单知识复杂教。
有余数除法的算式是从具体情境中抽象出来的数学模型,要让学生理解它,不能光靠教师的讲解,要让学生结合具体的生活情境动手操作,并且完整表述操作过程。如:“用13 根小棒摆三角形,能摆4 个,还剩1 根。”学生亲历实践—总结—再实践的过程,才会真正理解“商”和“余数”的含义。
3.块状知识链状教。
要想通过一次次的课时教学,使学生形成完整的知识体系,需要教师在备课时深入分析教材,准确把握上位知识、本体知识和下位知识。有余数除法的上位知识是表内乘除法,下位知识是用除法解决实际问题和多位数除法。教学中,从“平均分”复习引入“有余数的除法”,在理解算理时渗透生活实际问题的解决方案。如:“剩2 人,多租1 条船”“布料不够做1 件衣服了,把剩余部分舍去”。这样,学生才能把块状的知识点连接起来,形成知识链,进而织成知识网。