复合益生菌对超早期断奶杜藏乳仔猪肠道微生物群落结构的影响
2021-08-02刘韶娜郭飞张斌相德才赵智勇赵素梅赵彦光
刘韶娜 郭飞 张斌 相德才 赵智勇 赵素梅 赵彦光
刘韶娜(1983-),副研究员,毕业于浙江大学动物营养与饲料科学专业,主要从事动物营养与肠道微生物学研究工作。先后主持或作为主要成员参与云南省重点研发项目“云南省地方猪选育开发利用及粪便资源化利用示范”、 国家自然科学基金地区科学基金项目“冷冻猪GV期卵母细胞体外成熟后蛋白质组差异及调控策略研究”、云南省畜牧兽医科学院基础研究项目“芽孢杆菌和益生菌对迪庆藏猪肠道菌群结构与功能的影响机制研究”及云南省畜禽种质创新及标准化养殖技术推广专项等科研项目10余项;制定地方标准2项,参编专著2本,获授权国家发明专利1项;在《Theriogenology》《动物营养学报》《微生物学通报》《南方农业学报》等学术期刊上发表科技论文20余篇。
摘要:【目的】探究复合益生菌对超早期断奶(7 d)杜藏乳仔猪肠道微生物多样性及物种丰度的影响,以减轻乳仔猪断奶应激,为微生物饲料添加剂的研发提供科学依据。【方法】选取7日龄杜藏乳仔猪30头,随机分为3组,每组10头。对照组(ZM组)随母猪哺乳,试验I组(ZD组)哺喂代乳粉,试验II组(ZY组)哺喂代乳粉+复合益生菌,试验周期21 d。试验结束当天(28日龄)收集乳仔猪粪便,采用Illumina高通量测序分析粪便样品的菌群结构组成。【结果】Illumina高通量测序获得ZM组、ZY组和ZD组杜藏乳仔猪粪便样品共有OTU为327个,ZM组的特有OTU为247个,ZD组的特有OTU为84个,ZY组的特有OTU为96个。在门分类水平上,ZM组杜藏乳仔猪粪便样品中相对丰度最高的菌门为厚壁菌门,ZY组和ZD组为拟杆菌门;ZY组和ZD组的厚壁菌门/拟杆菌门比值分别为0.77和0.92,较ZM组(1.76)分别下降56.25%和47.73%。在属分类水平上,ZD组和ZY组杜藏乳仔猪粪便样品中的优势菌属为普氏菌属_9,ZM组则为乳杆菌属;ZD组杜藏乳仔猪粪便中布劳特氏菌属、肠球菌属和吉氏副拟杆菌属的相对丰度较其他2个处理组显著上升(P<0.05,下同);而ZY组杜藏乳仔猪粪便中普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、厌氧弧菌属、罕见小球菌属、瘤胃菌科_NK4A214群、瘤胃菌科_UCG-005、未明确普雷沃氏菌科及Family_XIII_AD3011_group的相对丰度显著高于ZD组。【结论】在杜藏超早期断奶仔猪代乳粉中添加复合益生菌能有效提高其肠道菌群结构多样性,同时提高与碳水化合物代谢和产短链脂肪酸相关菌群的相对丰度,即复合益生菌具有潛在促进营养物质代谢和抗炎症的功能,可缩短消化道微生物区系由哺乳型向饲料型的转变历程。
关键词: 杜藏乳仔猪;超早期断奶;代乳粉;复合益生菌;肠道微生物;多样性
中图分类号: S816.73 文献标志码: A 文章编号:2095-1191(2021)03-0547-12
Effects of the probiotic combinations on intestinal microbiota in ultra-early weaned piglets of Duroc×Diqing Tibetan pig
LIU Shao-na1, GUO Fei2, ZHANG Bin1, XIANG De-cai1, ZHAO Zhi-yong1,
ZHAO Su-mei2*, ZHAO Yan-guang1*
(1Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; 2Key Laboratory
of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China)
Abstract:【Objective】The study aimed to explore the effects of the probiotic combinations on the intestinal microbiota diversity and species abundance of ultra-early weaned(7 d) piglets of Duroc×Diqing Tibetan pig. Then released the stress of weaned piglets, and provided scientific basis for the development of microbial feed additives. 【Method】A total of 30 piglets of Duroc×Diqing Tibetan pig, aged 7-day-old were divided into 3 groups with 10 piglets in each group. The piglets of control group(group ZM) were fed with breast milk,the piglets of experimental group I (group ZD) were fed with milk replacer and the piglets of experimental group II (group ZY) were fed with milk replacer and probiotic combinations. The experimental period was 21 d. Collected the faeces samples of the piglets in the last day of the experiment(28-day-old),then analyzed the samples fecal microbiota in structure with IIIumina high throughput sequencing technology. 【Result】The IIIumina high throughput sequencing data showed that there were 327 common OTUs in the three groups, while there were 247 unique OTUs in the group ZM, 84 unique OTUs in the group ZD and 96 unique OTUs in the group ZY, respectively. At the phylum level,the relative abundance of Firmicutes in group ZM was the highest one,while that was Bacteroidetes in group ZD and group ZY. The Firmicutes/Bacteroidetes ratios were 0.77 and 0.92 of the group ZY and ZD,respectively. Compared with group ZM(1.76), they were decreased by 56.25% and 47.73%, respectively. At the genus level,the dominant genus of group ZD and ZY was Prevotella_9 in the faeces samples of the Duroc×Diqing Tibetan Pig,while that of group ZM was Lactobacillus. The relative abundance of Blautia, Enterococcus and Subdoligranulum in group ZD was significantly higher than the other two groups(P<0.05, the same below). The relative abundance of Prevotellaceae_NK3B31_group, Prevotellaceae_UCG-003, Anaerovibrio, Subdoligranulum, Ruminococcaceae_NK4A214_ group, Ruminococcaceae_UCG-005, norank_f_Prevotellaceae and Family_XIII_AD3011_group in group ZY were signi-ficantly higher than the group ZD. 【Conclusion】In conclusion,after feeding the milk replacer with adding the probiotic combinations, the diversity of structure of intestinal flora are increased, and the relative abundance of the microflora which is related to metabolism of carbohydrate and producing short chain fatty acids in ultra-early weaned piglets of Duroc×Diqing Tibetan pig were increased. The potential functions of the probiotic combinations which can promote nutrient metabolism and anti-inflammation can shorten the transformation process of digestive tract microflora from lactation type to feed type.
Key words: Duro×Diqing Tibetan pig; ultra-early weaned piglets; milk replacer; probiotic combinations; intestinal microbe; diversity
Foundation item:Key Research and Development Project of Yunnan(2018BB003);Yunnan Provincial Financial Breeding and Technology Promotion Project(20151105560055); Basic Research Project of Yunnan Academy of Animal Husbandry and Veterinary Sciences(2019RW014)
0 引言
【研究意义】抗生素滥用已造成细菌耐药性增强及药物残留超标(李威等,2020;李昕等,2020),且扰乱动物肠道屏障功能和改变肠道菌群结构,进而导致动物机体对某些病原菌更具感染性(Pamer,2016;Derosa et al.,2020;Hou et al.,2020),同时诱导肠道菌群代谢通路发生改变(色氨酸代谢和脂代谢失调),或影响某些基因正常表达(Sun et al.,2020;Teichman et al.,2020),严重制约了畜禽养殖业的持续健康发展。因此,寻找或研发抗生素替代型饲料添加剂是当前畜禽养殖生产中亟待解决的首要问题,也是目前畜牧学科中的研究热点之一。【前人研究进展】益生菌(Probiotic)是一类能改变宿主菌群组成且对宿主有益的活性微生物,在促进生长(李雪莉等,2017)、营养消化(夏耀耀等,2017;詹明晔等,2019)、降低发病率(谢全喜等,2017;Singer et al.,2019)及促进神经功能(Patil et al.,2017)和肠道器官发育(冯程程等,2019;吴敏等,2019)等方面发挥重要作用。在实际生产中,添加益生菌可通过直接(王晓丹等,2019)或间接(田时祎等,2018;Tian et al.,2018;Hu et al.,2019)促进肠道微生物代谢作用,从而发挥益生作用,促使肠道常驻菌与宿主的微空间结构间形成一个相互依赖又相互作用的微生态系统,在肠道内构成一个对抗病原体的重要保护屏障,以抵抗外来菌微生物的定殖。目前,常用的益生菌有芽孢杆菌、酵母菌、乳酸菌及梭菌等(杨虹等,2019;关嘉琦等,2020)。其中,枯草芽孢杆菌能提高断奶仔猪肠道菌群多样性,提高厚壁菌门相对丰度及短链脂肪酸、脱氧胆酸和石胆酸浓度(He et al.,2017);乳酸菌能显著提高老年鼠的肠道菌多样性,抑制炎症因子表达,减轻肠漏现象(Ahmadi et al.,2020);乳杆菌具有提高有益菌并降低有害菌相对丰度,增强菌群磷酸盐代谢、氨基酸转运系统和异亮氨酸生物合成,以及降低脂多糖生物合成的功能(Toscano et al.,2017;Hou et al.,2020)。【本研究切入点】至今,有关益生菌在断奶仔猪和育肥猪上的应用已有较多研究报道,但主要是单一或少数几种菌株复合使用(Latham et al.,2018;He et al.,2019;Zhang et al.,2020;Zheng et al.,2020),而针对复合益生菌的研究较少。【拟解决的关键问题】杜藏仔猪是以杜洛克为父本、迪庆藏猪为母本的杂交品种,具有耐高寒、耐低氧、耐粗饲和强抗病性的特点,通过选育及营养调控等措施已将其产仔数提高至9~12头,但母猪乳头数量少,不能满足其哺乳需求。故选择杜藏仔猪为试验动物,给予外源性复合益生菌,探究复合益生菌对超早期断奶(7 d)杜藏乳仔猪肠道微生物多样性及物种丰度的影响,旨在减轻乳仔猪断奶应激,同时为微生物饲料添加剂的研发提供科学依据。
1 材料与方法
1. 1 试验材料
从10窝杜藏仔豬中随机挑选初生体重和日龄接近的乳仔猪,每窝挑选3头,共计30头。按照血缘和体重随机分为3个处理组,每组2个重复,每个重复5头,每个重复同圈饲养。从初生7日龄开始试验,对照组(ZM组)杜藏乳仔猪随母猪哺乳至28日龄,2个试验组的杜藏乳仔猪则在7日龄断奶,试验周期21 d[预饲期7 d,正试期(饲喂对应的饲粮)14 d]。试验 I组(ZD组)哺喂代乳粉,试验II组(ZY组)哺喂代乳粉+复合益生菌。代乳粉是利用VF123参照国标NY/T 65—2004《猪饲养标准》的肉脂型地方猪3~8 kg计算配制的粉状配合饲料,其组成和营养成分见表1。代乳粉需用50~65 ℃温开水按1∶6比例冲调,冷却至38 ℃左右再进行饲喂。复合益生菌制剂(表2)包含类肠膜魏斯氏菌、植物乳杆菌、戊糖片球菌、贝莱斯芽孢杆菌、枯草芽孢杆菌和赖氨酸芽孢杆菌,均由云南省畜牧兽医科学院从迪庆藏猪肠道内容物及其粪便中分离获得(刘韶娜,2019a,2019b),添加量参考Kim和Isaacson(2015)、谢全喜等(2017)、Piuske等(2018)的研究结果。
1. 2 饲养管理
按照正常免疫程序对试验仔猪进行常规免疫,对猪舍进行清洁和消毒。对照组杜藏乳仔猪随母猪哺乳;试验组杜藏乳仔猪哺喂相对应的试验饲粮,试验周期内每天哺喂6次,从早晨8:00开始,每隔3 h哺喂1次,自由饮水。于28日龄(试验结束)当天收集刚排泄的粪便,取中间部分样品置于液氮中速冻,-80 ℃冰箱保存,用于高通量测序分析。
1. 3 16S rRNA序列PCR扩增
使用DNA提取试剂盒(OMEGA Bio-tek,Norcross,GA,U.S.)对杜藏乳仔猪粪便样品进行总DNA抽提,利用NanoDrop 2000检测DNA浓度和纯度,并以1.0%琼脂糖凝胶电泳检测DNA质量;采用引物对338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3')扩增16S rRNA序列V3~V4可变区,PCR反应体系20.0 ?L:5×Buffer 4.0 ?L,dNTPs(2.5 mmol/L)2.0 ?L,引物338F和806R(5 ?mol/L)各0.8 ?L,2×FastPfu聚合酶0.4 ?L,BSA 0.2 ?L,DNA模板10 ng,ddH2O补足至20.0 ?L。扩增程序:95 ℃预变性3 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 45 s,进行27个循环;72 ℃延伸10 min。回收PCR扩增产物并进行纯化,以Tris-HCl洗脱后进行琼脂糖凝胶电泳检测;并利用QuantiFluorTM-ST(Promega,USA)进行定量分析。
1. 4 高通量测序分析
使用Trimmomatic软件对原始测序结果进行序列质控,以FLASH进行拼接。利用Illumina MiSeq平台构建PE300的文库,根据97%相似度对序列进行OTU聚类,并去除单序列和嵌合体,在I-Sanger云平台对每条序列进行物种分类注释分析。采用SPSS 17.0进行单因素方差分析(One-way ANOVA)和Duncans多重比较。
2 结果与分析
2. 1 复合益生菌对杜藏乳仔猪肠道菌群结构的影响
2. 1. 1 OTU聚类分析结果 采用Illumina高通量测序获得样本数据后,经数据过滤、拼接及质控,平均每个粪便样品获得53810条高质量序列,平均长度为463.62 nt,将相似性达97%的序列聚类成1个OTU,12个粪便样品共获得1049个OTUs。杜藏乳仔猪粪便样品菌群物种的稀疏曲线见图1,当测序数据量在20000以上时,稀释曲线趋于平稳,说明测序的深度和数据量足够,即Illumina高通量测序数据合理,能基本反映样品中细菌的组成和种类。
由图2可知,ZM组、ZY组和ZD组杜藏乳仔猪粪便样品共有OTU为327个,ZM组的特有OTU为247个,ZD组的特有OTU为84个,ZY组的特有OTU为96个。ZM组的OTU总数为730个,ZD组的OTU总数为599个,两组的共有OTU为376个,可能是与迪庆藏猪母乳相比,代乳粉成分较单一,杜藏猪乳仔猪采食代乳粉后其肠道细菌物种随之发生变化,细菌种类下降。ZY组的OTU总数为669个,与ZM组的共有OTU为434个,与ZD组的共有OTU为466个。
2. 1. 2 Alpha多样性分析结果 Alpha多样性指数是反映样品物种多样性的指标之一,包括Shannon指数、ACE指数、Chao1指数和Simpson指数等。本研究结果表明,3个处理组杜藏乳仔猪粪便样品的Coverage指数均在0.9995以上,说明测序的深度和广度符合试验要求,试验数据合理。从表3可看出,ZY 组和ZM组杜藏乳仔猪粪便样品的Shannon指数、ACE指数和Chao1指数均高于ZD组,ZM组的Simpson指数则低于ZD组,但差异均不显著(P>0.05,下同)。其中,ZM组和ZY组的ACE指数及Chao1指数均显著高于ZD组(P?0.05,下同),说明在代乳粉中添加复合益生菌后能显著提高杜藏乳仔猪肠道菌群Alpha多样性。
2. 1. 3 Beta多样性分析结果 Beta多样性分析是对不同微生物群落间的物种多样性进行组间比較,以明确不同样品组间的群落组成相似性或差异性。在基于Weighted Unifrac加权距离的PCoA分析和基于Unweighted Unifrac加权距离的PCoA分析中,横坐标表示第一主成分(PC1),纵坐标表示第二主成分(PC2)。PCoA分析结果(图3和图4)表明,PC1和PC2对样品差异的贡献值分别为47.62%和15.54%、38.65%和13.97%。3个处理组12个杜藏乳仔猪粪便样品明显分开,但组内样品聚集在一起。其中,ZY组和ZD组样品在同一区域,与ZM组样品明显分开,说明ZY组和ZD组样品间差异较小,杜藏乳仔猪肠道菌群组成相似,但与ZM组间差异显著,即样品中的菌群组成差异显著。
2. 2 物种相对丰度影响分析结果
2. 2. 1 门分类水平上的优势菌群分析结果 在门分类水平上,3个处理组杜藏乳仔猪粪便样品中均以厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、螺旋菌门(Spirochaetes)和放线菌门(Actinobacteria)占据绝对优势(图5)。其中,厚壁菌门和拟杆菌门的相对丰度最高,其总和占样品中细菌总数的90%以上。ZM组的优势菌门为厚壁菌门,ZY组和ZD组的优势菌门为拟杆菌门。ZY组和ZD组的厚壁菌门/拟杆菌门比值分别为0.77和0.92,较ZM组(1.76)分别下降56.25%和47.73%。可见,采食代乳粉后杜藏乳仔猪粪便中拟杆菌门的相对丰度升高,在代乳粉中添加复合益生菌能进一步提高拟杆菌门的相对丰度,从而降低厚壁菌门/拟杆菌门比值。
2. 2. 2 属分类水平上的优势菌群分析结果 在属分类水平上,3个处理组杜藏乳仔猪粪便菌群主要分布在34个菌属,其相对丰度排名前10的菌属(图6)分别是普氏菌属_9(Prevotella_9)、norank_f_Muribaculaceae、乳杆菌属(Lactobacillus)、布劳特氏菌属(Blautia)、拟杆菌属(Bacteroides)、考拉杆菌属(Phascolarctobacterium)、普雷沃氏菌科_NK3B31群(Prevotellaceae_NK3B31_group)、毛螺菌科_NK4A136群(Lachnospiraceae_NK4A136_group)、密螺旋体属_2(Treponema_2)和毛螺菌科_AC2044群(Lachnospiraceae_AC2044_group)。其中,布劳特氏菌属、考拉杆菌属、乳杆菌属及毛螺菌科(Lachnospiraceae)等属于厚壁菌门,拟杆菌属、普氏菌属(Prevotella)、norank_f_Muribaculaceae及普雷沃氏菌科(Prevotellaceae)属于拟杆菌门,密螺旋体属属于螺旋体门。ZD组和ZY组的优势菌属为普氏菌属_9,ZM组则为乳杆菌属。此外,ZD组和ZY组的普氏菌属_9、norank_f_Muribaculaceae、布劳特氏菌属和考拉杆菌属均呈上升趋势,乳杆菌属、普雷沃氏菌科_NK3B31群、毛螺菌科_AC2044群、毛螺菌科_ NK4A136群和密螺旋体属_2则呈下降趋势。
2. 3 物种丰度聚类分析结果
不同处理组杜藏乳仔猪粪便样品物种丰度聚类分析结果如图7所示,ZD组和ZY组首先聚类在一起,然后与ZM组聚类在一起,说明试验组和对照组的杜藏乳仔猪粪便物种丰度明显分开,也表明2个试验组的杜藏乳仔猪粪便物种组成及相对丰度更接近。
2. 4 组间差异分析结果
由图8可知,ZD组和ZY组杜藏乳仔猪粪便中的布劳特氏菌属、罕见小球菌属(Subdoligranulum)、肠球菌属(Enterococcus)、未明确普雷沃氏菌科(norank_ f_Prevotellaceae)及瘤胃菌科(Ruminococcaceae)较ZM组均呈上升趋势,密螺旋体属_2、毛螺菌科_ AC2044群、普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、瘤胃菌科_NK4A214群、瘤胃菌科_ UCG-005及Family_XIII_AD3011_group则呈下降趋势。ZD组杜藏仔猪粪便中布劳特氏菌属、肠球菌属和吉氏副拟杆菌属(Parabacteriodes)的相对丰度较其他2个处理组呈显著上升趋势;而ZY组杜藏乳仔猪粪便中普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、厌氧弧菌属(Anaerovibrio)、罕见小球菌属、瘤胃菌科_NK4A214群、瘤胃菌科_UCG-005、未明确普雷沃氏菌科及Family_XIII_AD3011_group的相对丰度显著高于ZD组,说明在代乳粉中添加复合益生菌能改变杜藏乳仔猪肠道菌群结构,有利于普雷沃氏菌科、瘤胃菌科、厌氧弧菌属和罕见小球菌属等菌群的生长。
3 讨论
机体肠道内环境复杂,且受年龄、遗传、营养及生存环境等因素的影响,肠道内的菌群结构复杂且呈多样性的特点(Zhao et al.,2015;李永洙等,2019;刘晗璐等,2019;詹明晔等,2019)。日粮是影响机体肠道微生物多样性的主要因素(Claesson et al.,2012;Gudi et al.,2019)。李永洙等(2018)通过研究代乳粉对沂蒙黑山羊瘤胃微生物区系的影响,发现其肠道菌群Alpha多样性降低,随着日龄的增加,母乳组和代乳粉组沂蒙黑山羊瘤胃内微生物区系均达到一个动态平衡,且差异越来越小。在本研究中,ZD组杜藏乳仔猪粪便微生物多样性指标Chao1指数、ACE指数和Shannon指数均低于ZM组,Simpson指数则高于ZM组,说明采食代乳粉后粪便中微生物多样性降低,与李永洙等(2018)的研究结果一致。此外,ZD组的Chao1指数和ACE指数显著低于ZY组,说明在代乳粉中添加复合益生菌可有效提高杜藏乳仔猪肠道菌群结构多样性。
机体肠道内细菌种类繁多,形成一个错综复杂的微生物体系,促进个体发育并参与养分代谢。厚壁菌门细菌参与能量的吸收,促进机体从饲料中吸收能量,从而满足机体生长需求(Davis,2017;马燕等,2019)。拟杆菌门细菌参与碳水化合物、胆汁酸和类固醇的代谢,能提高营养物质的利用率,与肠黏膜修复、免疫发育及肠道微生态平衡等密切相关(Turnbaugh and Gordon,2010;马燕等,2019),拥有与碳水化合物利用降解和转运有关的多糖利用基因座,可根据碳水化合物种类和浓度的不同,针对性合成利用底物的碳水化合物活性酶(Turnbaugh et al.,2006;金磊等,2019)。本研究中,代乳粉中添加有葡萄糖等碳水化合物,可能是导致杜藏乳仔猪肠道菌群结构改变的原因之一。芽孢杆菌能产生大量脂肽类物质,而抑制病原菌生长及促进营养物质消化吸收(曹护群等,2019;王晓丹等,2019)。在ZY组代乳粉中添加含有芽孢杆菌和乳杆菌的复合益生菌,对杜藏乳仔猪的生长发育具有潜在促进作用,结果显示其粪便样品中芽孢杆菌和乳杆菌的相对丰度略有提高,但差异不显著,说明低剂量的益生菌并不能显著提高添加益生菌的相对丰度,也进一步证实饲粮才是影响肠道微生物的主要因素。厚壁菌门/拟杆菌门比值与热量和脂肪的贮存呈正相关(Turnbaugh et al.,2006;金磊等,2019),同时调控脂代谢相关基因表达与脂肪贮存和代谢,如厌氧弧菌属、普雷沃氏菌属与肌肉中甘油三酯的含量呈显著负相关(严鸿林,2018)。本研究結果显示,代乳粉中添加复合益生菌后能降低厚壁菌门/拟杆菌门比值,同时提高拟杆菌门、厌氧弧菌属和普雷沃氏菌属的相对丰度,说明添加复合益生菌具有提高碳水化合物、类固醇胆汁酸等营养物质利用率相关菌群相对丰度的趋势,进而提高与肠道黏膜修复和降低机体脂肪贮存的潜能。厚壁菌门和拟杆菌门是杜藏乳仔猪肠道内最主要的微生物,与王一冰等(2013)、刘晗璐等(2019)的研究结果一致。本研究观察到ZD组和ZY组杜藏乳仔猪肠道的优势菌为拟杆菌门和普氏菌属,ZM组为厚壁菌门和乳杆菌属,究其原因可能与饲粮的成分不同有关(王一冰等,2013;李永洙等,2019;刘晗璐等,2019;刘萍等,2019),肠道菌群结构的改变有利于仔猪适应断奶带来的饲粮成分变化及肠道黏膜损伤等应激反应。普氏菌属是肠道内的优势菌,其相对丰度与饲粮中的纤维含量呈正比,与饲粮中蛋白和脂肪的含量呈反比(姜涛等,2019),与碳水化合物的代谢密切相关(Murtaza et al.,2019)。说明分离于成年猪消化道的复合益生菌具有提高杜藏乳仔猪体内与碳水化合物代谢相关菌群的潜在功能,同时菌群结构发生改变,脂肪沉积型菌群的相对丰度降低,而促进断奶仔猪肠道内的菌群结构由哺乳型向碳水化合物等营养代谢型转变。说明复合益生菌的添加原则应以提高肠道微生物稳定性、多样性及环境适应性为前提,而不是以提高添加菌的相对丰度为目标。
短链脂肪酸是食物在机体肠道内被微生物发酵而获得的一种物质,其合成主要与布劳特氏菌、梭菌属、瘤胃球菌属、粪杆菌属、罕见小球菌属、罗斯氏菌属、粪球菌属、毛螺菌科、普氏栖粪菌属、拟杆菌属及考拉杆菌属相关(Zhang et al.,2015;Kang et al.,2018)。短链脂肪酸能增强肠黏膜免疫屏障作用,而降低肠道炎症反应,与动物的健康有密切联系。布劳特氏菌属是一种具有潜在保护作用的菌群,与肠道健康相关(Bai et al.,2018),能抵御碳青霉烯耐药型铜绿假单胞菌等致病菌的入侵(Pettigrew et al.,2019)。本研究结果显示,添加复合益生菌后,ZY组的毛螺菌科、罕见小球菌属和布劳特氏菌属相对丰度显著提高,表明复合益生菌能有效提高与短链脂肪酸产生有关及具有潜在抗菌作用菌群的相对丰度,对动物体抵抗肠道炎症具有潜在功能,但其作用机理尚需进一步探究。
复合益生菌的作用并非完全依靠其数量的增加,还需通过调节肠道内微生物菌群的种类和数量,才能发挥益生作用。本研究通过对比ZD组和ZY组发现,在代乳粉中添加益生菌后,杜藏乳仔猪粪便中的菌群多样性升高,尤其是与碳水化合物等代谢和短链脂肪酸产生相关的菌群(拟杆菌门、普雷沃氏菌属、罕见小球菌属、布劳特氏菌属、厌氧弧菌属及毛螺菌科等)相对丰度显著升高,说明添加分离自同种源成年猪消化道的益生菌具有潜在促进营养物质代谢和抗肠道炎症的功能,故推测复合益生菌的添加可缩短消化道微生物区系由哺乳型向饲料型的转变历程。
4 结论
在杜藏超早期断奶仔猪代乳粉中添加复合益生菌能有效提高其肠道菌群结构多样性,同时提高与碳水化合物代谢和产短链脂肪酸相关菌群的相对丰度,即复合益生菌具有潜在促进营养物质代谢和抗炎症的功能,可缩短消化道微生物区系由哺乳型向饲料型的转变历程。
参考文献:
曹护群,贺濛初,舒迎霜,夏晓东,冯士彬,李玉,王希春,吴金节. 2019. 犬源复合益生菌对脾气虚犬盲肠菌群的影响[J]. 动物营养学报,31(8):3810-3820. doi:10.3969/j.issn. 1006-267x.2019.08.043. [Cao H Q,He M C,Shu Y S,Xia X D,Feng S B,Li Y,Wang X C,Wu J J. 2019. Effects of canine derived compound probiotics on cecal microflora in splenic qi asthenia canines[J]. Chinese Journal of Animal Nutrition,31(8):3810-3820.]
馮程程,白凯文,王安谙,葛晓可,张莉莉,王恬. 2019. 日粮添加二甲基甘氨酸钠对宫内发育迟缓断奶仔猪肝脏抗氧化能力及免疫指标的影响[J]. 南京农业大学学报,42(2):336-344. doi:10.7685/jnau.201806011. [Feng C C,Bai K W,Wang A A,Ge X K,Zhang L L,Wang T. 2019. Effect of N,N-dimethylglycine sodium salt supplementation on hepatic antioxidant capacity and immune indices in intrauterine growth retardation weanling piglets[J]. Journal of Nanjing Agricultural University,42(2):336-344.]
关嘉琦,李柏良,焦雯姝,李慧臻,岳莹雪,李娜,史佳鹭,赵莉,霍贵成. 2020. 益生菌对促进肠道发育作用的研究进展[J]. 食品科学,41(21):278-285. doi:10.7506/spkx1002- 6630-20191015-132. [Guan J Q,Li B L,Jiao W S,Li H Z,Yue Y X,Li N,Shi J L,Zhao L,Huo G C. 2020. Recent advances in understanding the role of probiotics in promoting intestinal development[J]. Food Science,41(21):278-285.]
姜涛,王雯磊,张明和,张军. 2019. 普雷沃菌和饮食及糖代谢关系的研究进展[J]. 中华糖尿病杂志,11(4):296-298. doi:10.3760/cma.j.issn.1674-5809.2019.04.015. [Jiang T,Wang W L,Zhang M H,Zhang J. 2019. Research pro-gress of the relationship between Prevotella copri,diet and glucose metabolism[J]. Chinese Journal of Diabetes Me-llitus,11(4):296-298.]
金磊,王立志,王之盛,薛白,彭全辉. 2019. 基于高通量测序技术对山羊盲肠细菌多样性的分析[J]. 微生物学通报,46(6):1423-1433. doi:10.13344/j.microbiol.china.180599. [Jin L,Wang L Z,Wang Z S,Xue B,Peng Q H. 2019. Analysis of cecum bacterial diversity of goat based on Illumina MiSeq sequencing[J]. Microbiology China,46(6):1423-1433.]
李威,李佳熙,李吉平,吕宝玲,张银龙. 2020. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版),44(1):205-214. doi:10.3969/j.issn. 1000-2006.201902002. [Li W,Li J X,Li J P,Lü B L,Zhang Y L. 2020. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University(Natural Science Edition),44(1):205-214.]
李昕,曾洁,王岱,薛云新,赵西林. 2020. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志,45(2):113-121. doi:10.13461/j.cnki.cja.006866. [Li X,Zeng J,Wang D,Xue Y X,Zhao X L. 2020. Recent advances in the mecha-nism of bacterial resistance and tolerance[J]. Chinese Journal of Antibiotics,45(2):113-121.]
李雪莉,王超,虞德夫,丁立人,朱伟云,杭苏琴. 2017. 微生态制剂对断奶仔猪生长性能、器官重及其胃肠道发育的影响[J]. 草业学报,26(8):192-199. doi:10.11686/cyxb2016438. [Li X L,Wang C,Yu D F,Ding L R,Zhu W Y,Hang S Q. 2017. Effects of probiotics on the growth performance,organ relative weight,and intestine development of weaned piglets[J]. Acta Prataculturae Sinica,26(8):192-199.]
李永洙,金太花,韩照清,夏春峰,晁洪雨,张乃锋,王世琴,刁其玉. 2018. 代乳粉对早期断奶沂蒙黑山羊羔小肠发育、菌群多样性及葡萄糖转运载体基因表达的影响[J]. 中国农业科学,51(11):2193-2205. doi:10.3864/j.issn.0578-1752.2018.11.016. [Li Y Z,Jin T H,Han Z Q,Xia C F,Chao H Y,Zhang N F,Wang S Q,Diao Q Y. 2018. Effects of the milk replacer on the development of intestine,the flora diversity and the relative expression of glucose transporter gene of early weaned Yimeng black goat lambs[J]. Scientia Agricultura Sinica,51(11):2193-2205.]
李永洙,韩照清,金太花,夏春峰,晁洪雨,张乃锋,王世琴,刁其玉. 2019. 代乳粉对沂蒙黑山羊羔羊早期生长性能及其瘤胃微生物区系的影响[J]. 动物营养学报,31(8):3600-3611. doi:10.3969/j.issn.1006-267x.2019.08.021. [Li Y Z,Han Z Q,Jin T H,Xia C F,Chao H Y,Zhang N F,Wang S Q,Diao Q Y. 2019. Effects of milk replacer on growth performance and rumen microflora in early wea-ning Yimeng black lambs[J]. Chinese Journal of Animal Nutrition,31(8):3600-3611.]
刘晗璐,钟伟,司华哲,李志鹏,李光玉. 2019. 鲜饲料与混合饲粮对咖啡貂(Mustela iutreola)肠道微生物多样性的影响[J]. 动物营养学报,31(1):226-235. doi:10.3969/j.issn. 1006-267x.2019.01.028. [Liu H L,Zhong W,Si H Z,Li Z P,Li G Y. 2019. Effects of fresh feed and mixed diets on gut microbiota diversity in European mink(Mustela iutreola)[J]. Chinese Journal of Animal Nutrition,31(1):226-235.]
劉萍,赵金标,耿正颖,王军军,刘岭,王春林,郭娉婷,吴怡,张刚,黄冰冰. 2019. 日粮添加褐藻糖胶对断奶仔猪抗炎能力和肠道微生物多样性的影响[J]. 微生物学报,59(4):700-710. [Liu P,Zhao J B,Geng Z Y,Wang J J,Liu L,Wang C L,Guo P T,Wu Y,Zhang G,Huang B B. 2019. Influence of dietary fucoidan on inflammatory response and intestinal microbial diversity in weaned pigs[J]. Acta Microbiology Sinica,59(4):700-710.]
刘韶娜,张斌,相德才,赵智勇,赵彦光. 2019a. 芽孢杆菌B13的分离鉴定及其抑菌作用研究[J]. 中国畜牧兽医,46(2):573-581. doi:10.16431/j.cnki.1671-7236.2019.02.029. [Liu S N,Zhang B,Xiang D C,Zhao Z Y,Zhao Y G. 2019a. Isolatiog,identification and study of a Bacillus sp. B13 with high antibiotic character[J]. China Animal Husbandry & Veterinary Medicine,46(2):573-581.]
刘韶娜,张斌,相德才,赵智勇,赵彦光. 2019b. 一株植物乳杆菌的分离、鉴定及其特性研究[J]. 饲料研究,(9):73-77. doi:10.13557/j.cnki.issn.1002-2813.2019.09.018. [Liu S N,Zhang B,Xiang D C,Zhao Z Y,Zhao Y G. 2019b. Isola-ting,identification and characteristic research of a Lactobacillus plantarum[J]. Feed Research,(9):73-77.]
马燕,马爽,尚春香,格日力. 2019. 低氧暴露对大鼠肠道微生物群落的影响[J]. 微生物学通报,46(1):120-129. doi:10.13344/j.microbiol.china.180306. [Ma Y,Ma S,Shang C X,Ge R L. 2019. Effects of hypoxic exposure on rats? gut microbiota[J]. Microbiology China,46(1):120-129.]
田时祎,王珏,汪晶,朱伟云. 2018. 早期低聚半乳糖干预对哺乳仔猪回肠形态、功能发育相关基因及回肠菌群的影响[J]. 南京农业大学学报,41(5):917-924. doi:10.7685/jnau.201711031. [Tian S Y,Wang J,Wang J,Zhu W Y. 2018. The effect of early intervention with galacto-oligosaccharides on the morphological structure,functional development,and microbial community in ileum of suckling piglets[J]. Journal of Nanjing Agricultural University,41(5):917-924.]
王晓丹,孔祥峰,赵越,章文明,王占彬. 2019. 枯草芽孢杆菌对断奶仔猪生长性能和血浆生化参数的影响[J]. 动物营养学报,31(2):605-611. doi:10.3969/j.issn.1006-267x. 2019.02.016. [Wang X D,Kong X F,Zhao Y,Zhang W M,Wang Z B. 2019. Effects of Bacillus subtilis on growth performance and plasma biochemical parameters of weaned piglets[J]. Chinese Journal of Animal Nutrition,31(2):605-611.]
王一冰,张小平,黄怡,李卫芬. 2013. 运用454焦磷酸测序技术对断奶前后仔猪肠道菌群的分析[J]. 动物营养学报, 25(10):2440-2446. doi:10.3969/j.issn.1006-267x.2013.10. 028. [Wang Y B,Zhang X P,Huang Y,Li W F. 2013. Intestinal microflora analysis of pre-and post-weaning piglets using by 454 pyrosequencing technology[J]. Chinese Journal of Animal Nutrition,25(10):2440-2446.]
吴敏,刘作华,齐仁立. 2019. 肠道微生物调控动物肌肉的生长和发育[J]. 动物营养学报,31(9):3976-3982. doi:10. 3969/j.issn.1006-267x.2019.09.008. [Wu M,Liu Z H,Qi R L. 2019. Growth and development of muscle in animals controlled by intestinal microbes[J]. Chinese Journal of Animal Nutrition,31(9):3976-3982.]
夏耀耀,任文凯,黄瑞林,曾本华,魏泓,印遇龙. 2017. 仔猪肠道微生物研究进展[J]. 中国实验动物学报,25(6):681-688. doi:10.3969/j.issn.1005-4847.2017.06.018. [Xia Y Y,Ren W K,Huang R L,Zeng B H,Wei H,Yin Y L. 2017. Current understanding of the intestinal microbiota of piglets[J]. Acta Laboratorium Animalis Scientia Sinica,25(6):681-688.]
谢全喜,亓秀晔,陈振,于佳民,徐海燕,谷巍. 2017. 复合微生态制剂对断奶仔猪生长性能、腹泻率、免疫性能和肠道菌群的影响[J]. 动物营养学报,29(3):850-858. doi:10. 3969/j.issn.1006-267x.2017.03.015. [Xie Q X,Qi X Y,Chen Z,Yu J M,Xu H Y,Gu W. 2017. Effects of compound probiotics on growth performance,diarrhea rate,immunity performance and intestinal microflora of weaned piglets[J]. Chinese Journal of Animal Nutrition,29(3):850-858.]
嚴鸿林. 2018. 肠道微生物及其与营养互作对猪骨骼肌表型及代谢的调控[D]. 雅安:四川农业大学. [Yan H L. 2018. Regulation of porcine skeletal muscle-phenotyoes and metabolism by gut microbita and its interaction with nutition[D]. Yaan:Sichuan Agriculture University.]
杨虹,谢明宝,于辉,农兴新,杨文豪,杨映. 2019. 2种微生态制剂对乌鳢生长性能、肠道形态及免疫功能的影响[J]. 河南农业科学,48(1):134-140. doi:10.15933/j.cnki. 1004-3268.2019.01.022. [Yang H,Xie M B,Yu H,Nong X X,Yang W H,Yang Y. 2019. Effects of microecological preparations on growth performance,intestinal morphology and immune function of Channa argus[J]. Journal of Henan Agricultural Sciences,48(1):134-140.]
詹明晔,付小花,张姝,张鑫,杨海迪,俞锦华,王爱善,王磊. 2019. 不同地区成体大熊猫肠道微生物结构差异性及其与纤维素消化能力的相关性[J]. 应用与环境生物学报,25(3):736-742. doi:10.19675/j.cnki.1006-687x.2018.080-12. [Zhan M Y,Fu X H,Zhang S,Zhang X,Yang H D,Yu J H,Wang A S,Wang L. 2019. Differences of the intestinal microbial structure of adult giant panda in diffe-rent regions and its correlation with the digestibility of cellulose[J]. Chinese Journal of Applied & Environmental Biology,25(3):736-742.]
Ahmadi S,Wang S H,Nagpal R,Wang B,Jain S L,Razazan A,Mishra S P,Zhu X W,Wang Z,Kavanagh K,Yadav H. 2020. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating microbiota/taurine/tight junction axis[J]. JCI Insight,5(9):e132055. doi:10.1172/jci.insight.132055.
Bai J,Zhu Y,Dong Y. 2018. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats[J]. Journal of Functional Foods,41:127-134. doi:10.1016/j.jff.2017.12.050.
Claesson M J,Jeffery I B,Conde S,Power S E,O?Connor E M,Cusack S,Harris H M B,Coakley M,Lakshmina-rayanan B,OSullivan O,Fitzgerald G F,Deane J,OConnor M,Harnedy N,OConnor K,OMahony D,van Sinderen D,Wallace M,Brennan L,Stanton C,Marchesi J R,Fitzgerald A P,Shanahan F,Hill C,Ross R P,O?Toole P W. 2012. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature,488(7410):178-184. doi:10.1038/nature11319.
Davis H C. 2017. Can the gastrointestinal microbiota be modu-lated by dietary fibre to treat obesity?[J]. Irish Journal of Medical Science,187(1):393-402. doi:10.1007/s11845-017-1686-9.
Derosa L,Routy B,Fidelle M,Iebba V,Alla L,Pasolli E,Segata N,Desnoyer A,Pietrantonio F,Ferrere G,Fahrner J E,Le Chatellier E,Pons N,Galleron N,Roume H,Duong C P M,Mondragón L,Iribarren K,Bonvalet M,Terrisse S,Rauber C,Goubet A G,Daillère R,Lemaitre F,Reni A,Casu B,Alou M T,Silva C A C,Raoult D,Fizazi K,Escudier B,Kroemer G,Albiges L,Zitvogel L. 2020. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients[J]. European Urology,78(2):195-206. doi:10.1016/j.eururo.04. 044.
Gudi R,Perez N,Johnson B M,Sofi M H,Brown R,Quan S H,Karumuthil-Melethil S,Vasu C. 2019. Complex die-tary polysaccharide modulates gut immune function and microbiota,and promotes protection from autoimmune dia-betes[J]. Immunology,157(1):70-85. doi:10.1111/imm. 13048.
He B K,Hoang T K,Tian X J,Taylor C M,Blanchard E,Luo M,Bhattacharjee M B,Freeborn J,Park S,Couturier J,Lindsey J W,Tran D Q,Rhoads J M,Liu Y Y. 2019. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota[J]. Frontiers in Immunology,10:385. doi:10. 3389/fimmu.2019.00385.
He Y Y,Mao C X,Wen H,Chen Z Y,Lai T,Li L Y,Lu W,Wu H D. 2017. Influence of ad libitum feeding of piglets with Bacillus subtilis fermented Liquid Feed on gut flora,luminal contents and health[J]. Scientific Reports,7:44553. doi:10.1038/srep44553.
Hou Q C,Zhao F Y,Liu W J,Lü R R,Khine W W T,Han J,Sun Z H,Lee Y K,Zhang H P. 2020. Probiotic-directed modulation of gut microbiota is basal microbiome dependent[J]. Gut Microbes,12(1):1736974. doi:10.1080/19490976.2020.1736974.
Hu P,Zhao F Z,Zhu W Y,Wang J. 2019. Effects of early-life lactoferrin intervention on growth performance,small intestinal function and gut microbiota in suckling piglets[J]. Food & Function,10(9):5361-5373. doi:10.1039/c9fo00676a.
Kang Y F,Guan G,Zhang S M,Ross C F,Zhu M J. 2018. Goji berry modulates gut microbiota and alleviates colitis in IL-10-deficient mice[J]. Molecular Nutrition & Food Research,62(22):e1800535. doi:10.1002/mnfr.201800 535.
Kim H B,Isaacson R E. 2015. The pig gut microbial diversity:Understanding the pig gut microbial ecology through the next generation high throughput sequencing[J]. Vete-rinary Microbiology,177(3-4):242-251. doi:10.1016/j.vetmic.2015.03.014.
Latham E A,Pinchak W E,Trachsel J,Allen H K,Callaway T R,Nisbet D J,Anderson R C. 2018. Isolation,characte-rization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation,nitrate/nitrite detoxification and food safety[J]. Bioresource Technology,263:358-364. doi:10.1016/j.biortech. 2018.04.116.
Murtaza N,Burke L M,Vlahovich N,Charlesson B,O'Neill H,Ross M L,Campbell K L,Krause L,Morrison M. 2019. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers[J]. Nutrients,11(2):261. doi:10.3390/nu11020261.
Pamer E G. 2016. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens[J]. Sience,352(6285):535-538. doi:10.1126/science.aad9382.
Patil Y,Gooneratne R,Ju X H. 2019. Interactions between host and gut microbiota in domestic pigs:A review[J]. Gut Microbes,11(3):310-334. doi:10.1080/19490976. 2019.1690363.
Pettigrew M M,Gent J F,Kong Y,Halpin A L,Pineles L,Harris A D,Johnson J K. 2019. Gastrointestinal microbiota disruption and risk of colonization with carbapenem-resistant Pseudomonas aeruginosa in intensive care unit patients[J]. Clinical Infectious Diseases,69(4):604-613. doi:10.1093/cid/ciy936.
Piuske J R,Turpin D L,Kim J C. 2018. Gastrointestinal tract (gut) health in the young pig[J]. Animal Nutrition,4(2):187-196. doi:10.1016/j.aninu.2017.12.004.
Singer J R,Blosser E G,Zindl C L,Silberger D J,Conlan S,Laufer V A,DiToro D,Deming C,Kumar R,Morrow C D,Segre J A,Gray M J,Randolph D A,Weaver C T. 2019. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis[J]. Nature medicine,25(11):1772-1782. doi:10.1038/s41591-019-0640-y.
Sun J,Liao X P,D'Souza A W,Boolchandani M,Li S H,Cheng K,Martínez J L,Li L,Feng Y J,Fang L X,Huang T,Xia J,Yu Y,Zhou Y F,Sun Y X,Deng X B,Zeng Z L,Jiang H X,Fang B H,Tang Y Z,Lian X L,Zhang R M,Fang Z W,Yan Q L,Dantas G,Liu Y H. 2020. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms[J]. Nature Communications,11(1):1427. doi:10.1038/s41467-020-15222-y.
Teichman E M,O'Riordan K J,Gahan C G M,Dinan T G,Cryan J F. 2020. When rhythms meet the blues:Circa-dian interactions with the microbiota-gut-brain axis[J]. Cell Metabolism,31(3):448-471. doi:10.1016/j.cmet.2020. 02.008.
Tian S Y,Wang J,Yu H,Wang J,Zhu W Y. 2018. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets[J]. Journal of Animal Science and Biotechnology,9:75. doi:10.1186/s40104-018-0290-9.
Toscano M,Grandi R D,Stronati L,de Vecchi E,Drago L. 2017. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level:A preliminary study[J]. World Journal of Gastroenterology,23(15):2696-2704. doi:10.3748/wjg.v23.i15.2696.
Turnbaugh P J,Gordon J I. 2010. The core gut microbiome,energy balance and obesity[J]. The Journal of Physiology,587(17):4153-4158. doi:10.1113/jphysiol.2009.174136.
Turnbaugh P J,Ley R E,Mahowald M A,Magrini V,Mardis E R,Gordon J I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,444(7122):1027-1031. doi:10.1038/nature05414.
Zhang J C,Guo Z,Xue Z S,Sun Z H,Zhang M H,Wang L F,Wang G Y,Wang F,Xu J,Cao H F,Xu H Y,Lü Q,Zhong Z,Chen Y F,Qimuge S,Menghe B,Zheng Y,Zhao L P,Chen W,Zhang H P. 2015. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles,geography and ethnicities[J]. The ISME Journal,9(9):1979-1990. doi:10.1038/ismej.2015.11.
Zhang M L,Li M,Sheng Y,Tan F,Chen L Q,Cann I,Du Z Y,Rawls J F. 2020. Citrobacter species increase energy harvest by modulating intestinal microbiota in fish:Nondominant species play important functions[J]. mSystems,5(3):e00303. doi:10.1128/mSystems.00303-20.
Zhao W J,Wang Y P,Liu S Y,Huang J J,Zhai Z X,He C,Ding J M,Wang J,Wang H J,Fan W B,Zhao J G,Meng H. 2015. The dynamic distribution of porcine microbiotaacross different ages and gastrointestinal tract segments[J]. PLoS One,10(2):e0117441. doi:10.1371/journal.pone.0117441.
Zheng D W,Pan P,Chen K W,Fan J X,Li C X,Cheng H,Zhang X Z. 2020. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure[J]. Nature Biomedical Enginee-ring,4:852-862. doi:10.1038/s41551-020-0582-1.
(責任编辑 兰宗宝)