极限的求解方法总结
2018-11-05丁文武
丁文武
摘 要 极限在高等数学和数学分析中占据了极为重要的位置。求极限的方法除了等价无穷小量代换定理、洛必达法则、夹逼定理、单调有界准则等常规方法外,对一些特殊函数,还有许多重要的非常规方法,如利用级数的和、幂级数的展开式,级数收敛的必要条件,微分中值定理,积分中值定理,这些方法的使用为极限的求解带来较大的方便。
关键词 极限 级数 微分中值定理 积分中值定理
中图分类号:O151 文献标识码:A DOI:10.16400/j.cnki.kjdks.2018.08.017
Abstract Limits occupy an extremely important position in advanced mathematics and mathematical analysis. In addition to the equivalent methods such as the equivalent infinitesimal substitution theorem, the Lbida rule, the pinch-forcing theorem, and the monotone bounded criterion, there are many important unconventional methods for some special functions, such as the use of series. The expansion of the sum, the power series, the necessary conditions for the convergence of the series, the differential mean value theorem, and the integral median theorem. The use of these methods brings greater convenience to the solution of the limit.
Keywords limit; series; differential mean value theorem; integral median theorem
參考文献
[1] 霍玉珍.求极限的方法与技巧[J].牡丹江教育学院学报,2003(3).
[2] 高玉芬.求极限的方法与技巧[J].青海师专学报,2000(3).
[3] 周根立.求极限的方法[J].山西煤炭管理干部学院学报,2000(3).
[4] 曲亚男.求解函数极限的若干方法[J].中国科技信息,2005(19).
[5] 楼海平.例说不定积分教学与求解技巧[J].成都教育学院学报,2003(11).