边界条件依赖谱参数的非连续Sturm—Liouville算子的谱问题
2018-05-14闫丽魏广生
闫丽 魏广生
摘 要:为了丰富Sturm-Liouville(S-L)微分算子的谱理论,研究了闭区间[0,1]上边界条件依赖谱参数的非连续S-L问题。首先利用该问题在直和空间上的等价刻画,给出了非连续S-L问题特征值与连续S-L问题特征值间的交替关系,即在非连续S-L问题的特征值的每个开子区间内都恰有连续S-L问题的一个特征值,进而由连续S-L问题的振荡理论推出非连续S-L问题的振荡理论。然后通过Prüfer变换和Hergloz函数的转换,建立了边界条件依赖谱参数的非连续S-L问题与边界条件为常值的非连续S-L问题的转换,得出转换后的特征值与转换前(除去有限个)的特征值相等。最后通过构造边界条件为常值的非连续S-L问题的特征函数求得其特征值的渐近式,从而得到了边界条件依赖谱参数的非连续S-L问题的特征值的渐近表达式。新的研究方法可推广到对间断点条件依赖谱参数的S-L问题研究。
关键词:算子代数;Sturm-Liouville微分算子;非连续条件;参数边界条件
中图分类号:O175.1 MSC(2010)主题分类:47A75 文献标志码:A
文章编号:1008-1542(2018)04-0321-10doi:10.7535/hbkd.2018yx04005
Abstract:In order to enrich the spectral theory of Sturm-Liouvillel (S-L) differential operators, the discontinuous S-L problem with boundary conditions dependent on spectral parameters on closed interval \[0,1\] is studied. Firstly, by using the equivalent characterization of the problem in the direct sum space, the alternating relation between the eigenvalues of the discontinuous S-L problem and the eigenvalues of the continuous S-L problem is given. That is, there is exactly one eigenvalue of the continuous S-L problem in every open subinterval of the eigenvalues of the discontinuous S-L problem, and then the oscillation theory of the discontinuous S-L problem is derived from the oscillation theory of the continuous S-L problem. Through the transformations of Prüfer and Hergloz function, the transformation between the discontinuous S-L problem with boundary conditions dependent spectral parameters and discontinuous S-L problem with constant boundary conditions is established. The obtained converted eigenvalues are equal to those (excluding the finite eigenvalues) before the conversion. Finally, the asymptotic expressions of eigenvalues of discontinuous S-L problems with boundary conditions dependent on spectral parameters are obtained by constructing the eigenfunctions of discontinuous S-L problems with constant boundary conditions. The new research method can be extended to the study of the S-L problem with boundary conditions dependent spectral parameters.
Keywords:operator algebras; Sturm-Liouville differential operator; discontinuity conditions; eigenparameter-dependent boundary condition
Sturm-Liouville(簡称S-L)微分算子理论在研究许多数学物理问题中有重要的作用,其特征值问题长期以来受到物理学界和数学学界的关注。其中,非连续S-L问题基于许多物理背景和实际应用问题,例如:中间有结点的弦振动问题[1-4]、衍射问题[5-7]、质量转移问题[8-10]以及薄的叠层板块的热传导问题[11-13];再比如地球物理中,地壳底部横波的反射[14-16]也会导致相应的S-L问题不连续,会产生一个跨越界面的条件,这个条件一般称之为“界面条件”或“转移条件”,即特征函数及其导数产生间断点。
3 结 论
基于文献\[1\]中的结论,针对非连续且边界条件含谱参数的S-L问题(1)—问题(5)的特征值给出了精细估计, 首先利用Hergloz函数的转换,建立了边界条件含谱参数的S-L问题与常值边界条件S-L问题的转换。然后通过直和空间的等价刻画, 证明了非连续S-L问题的特征值与连续S-L问题的特征值间的交替关系,并建立了该问题的振荡理论。最后得到了特征值的渐近表达式。研究结果为该问题的逆问题提供了理论依据。
參考文献/References:
[1] BENEDEK A I, PANZONE R. On Sturm-Liouville problems with the square root of the eigenvalue parameter conditions contained in the boundary conditions[J]. Notas Algebra Analysis, 1981, 10: 1-62.
[2] BINDING P A, HRYNIV R, LANGER H,et al. Elliptic eigenvalue problems with eigenparameter dependent boundary conditions[J]. J Differential Equations, 2001, 174: 30-54.
[3] DIJKSMA A. Eigenfunction expansions for a class of J-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter[J]. Proc Roy Soc Edinburgh Sect A, 1980, 86: 1-27.
[4] EBERHARD W, FREILING G, SCHNEIDER A. Eigenfunction expansion for a regular fourth order eigenvalue problem with eigenvalue parameter in the boundary condition[J]. Int J Math Math Sci, 1992, 15: 809-811.
[5] FULTON C T. Singular eigenvalue problems with eigenvalue-parameter contained in the boundary conditions[J]. Proc Roy Soc Edinburgh Sect A, 1980, A 87: 1-34.
[6] HINTON D B, SHAW J K. Differential operators with spectral parameter incompletely in the boundary conditions[J]. Funkcial Ekvac, 1990, 33: 363-385.
[7] RUSSAKOVSKII E M. The matrix Sturm-Liouville problem with spectral parameter in the boundary conditions[J]. Algebraic and operator aspects, Trans Moscow Math Soc, 1996, 57: 159-184.
[8] HINTON D B. Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary conditions[J]. SIAM J Math Anal, 1981, 12: 572-584.
[9] KOZHEVNIKOV A, YAKUBOV S. On operators generated by elliptic boundary problems with a spectral parameter in boundary conditions[J]. Integral Equations Operator Theory, 1995, 23: 205-231.
[10]RUSSAKOVSKII E M. Operator treatment of boundary problems with spectral parameters entering via ploynomials in the boundary conditions[J]. Funct Anal Appl, 1975, 9: 358-359.
[11]SHKALIKOV A A. Boundary problems for ordinary differential equations with parameter in the boundary conditions[J]. J Soviet Math, 1986, 33: 1311-1342.
[12]TRETTER C. On lambda-nonlinear boundary eigenvalue problems[J]. Mathematics Research Akademie, 1993, 71:1208-1216.
[13]ZAYED E M E, IBRAHIM S F. An expansion theorem for an eigenvalue problem on an arbitrary conditions[J]. Acta Math Sin (Engl Ser), 1995, 11: 399-407.
[14]WEI G, XU H K. Inverse spectral problem with partial information given on the potential and norming constants [J]. Trans Amer Math Soc, 2012, 364: 3265-3288.
[15]PIVOVARCHIK V N. An inverse Sturm-Liouville problem by three spectra[J]. Integral Equ Oper Theory, 1999, 34: 234-243.
[16]GESZTESY F, SIMON B. Inverse spectral analysis with partial information on the potential. II. The case of discrete sprctrum [J]. Trans Amer Math Soc, 2000, 35: 2765-2787.
[17]江卫华,郭彦平,王斌.二阶微分方程组边值问题2个正解的存在性[J].河北科技大学学报,2006,27(1):15-17.
JIANG Weihua, GUO Yanping, WANG Bin. Existence of two positive solutions to boundary value problems of second order systems[J]. Journal of Hebei University of Science and Technology, 2006,27(1):15-17.
[18]郭彦平,苗素荣,禹长龙.无穷区间上二阶三点差分方程边值问题正解的存在性[J].河北科技大学学报,2016,37(6):556-561.
GUO Yanping, MIAO Surong, YU Changlong. Existence of positive solutions to boundary value problem of second-order three-point difference equations on infinite intervals[J]. Journal of Hebei University of Science and Technology, 2016,37(6):556-561.
[19]WEI G, XU H K. Inverse spectral problem for a string equation with partial information [J]. Inverse Problems, 2010, 26: 115004.
[20]GESZTESY F, SIMON B. On the determination of a potential from three spectra[J]. Amer Math Soc Transl, 1997, 2: 18-26.
[21]GESZTESY F, SIMON B. Inverse spectral analysis with partial information on the potential, Ⅰ. The case of an a.c. component in the sprctrum[J]. Helv Phys Acta, 1997, 70: 66-71.
[22] BINDING P A, BROWNE P J, WATSON B A. The Sturm-Liouville problem with the discontinuity conditions at an interior point and boundary conditions depending on the eigenparameter[J]. Proc Edinb Math Soc, 2002, 45: 631-645.
[23] 傅守忠, 王忠, 魏廣生. Sturm-Liouville问题及其逆问题[M]. 北京: 科学出版社, 2015.