淮北平原旱涝急转条件下水稻减产规律分析
2017-11-20胡铁松袁宏伟杨继伟
高 芸,胡铁松※,袁宏伟,杨继伟
淮北平原旱涝急转条件下水稻减产规律分析
高 芸1,胡铁松1※,袁宏伟2,杨继伟2
(1.武汉大学水资源与水电工程科学国家重点实验室,武汉 430072;2.安徽省水利部淮河水利委员会水利科学研究院,蚌埠233000)
为探究水稻旱涝急转下先期旱胁迫与后期涝胁迫交互作用对产量造成的影响,于2016年在淮委水科院新马桥试验站开展了不同旱涝水平(受旱程度(50%~70%田持),受旱时间(5~15 d),受涝程度(50%~100%株高),受涝时间(5~9 d))的旱涝急转组,单旱组,单涝组,正常组平行对比形式的测桶试验。分析了不同旱涝组合形式下先旱与后涝互作效应的减产规律,进一步探究了旱涝互作对产量构成因素的影响。结果表明:通过旱涝急转组与正常组对比,重旱重涝组合减产30.3%,对产量最为不利,长时间重旱使总粒数削减30%左右,千粒质量与结实率均接近或高于正常组;旱涝急转组与单旱组对比,旱涝急转组(重涝)比单旱组产量削减程度增加30%以上,总粒数损失增加33.9%~35.2%,旱涝急转组(短期轻涝)比单旱组(长期重旱)千粒质量和结实率分别补偿33.6%和37.6%;旱涝急转组与单涝组对比,旱涝急转组(长期轻旱)比单涝组(长期重涝)产量补偿113.0%,旱涝急转组(重旱)比单涝组(重涝或长期轻涝)总粒数削减31.9%~33.7%,旱涝急转组(长期旱)比单涝组千粒质量和结实率分别补偿79.7%和118.4%。研究成果可为探究旱涝急转致灾机理及减灾措施提供参考。
胁迫;干旱;灌溉;水稻;减产规律;旱涝急转;补偿
0 引 言
受亚热带季风气候影响,2011年以来淮北平原地区发生了多次严重的“旱涝急转”自然灾害[1],该地区水稻生长期与雨季重合,易使前期处于干旱胁迫状态的水稻快速转入涝胁迫[2-3],因此探索旱涝急转下水稻减产规律,对于制定合理减灾措施具有重要的现实意义。
旱涝急转对作物产量的影响不同于正常条件[4],与极端旱涝也有很大区别。周磊[5]等对作物适度缺水反弹补偿节水的分子生理机制进行探索,提出作物缺水后复水会发生超补偿、近等量补偿、适当恢复和无恢复4种亏缺阈值。郭相平[6]等对旱、涝及其交替胁迫的研究进展进行了综述,认为交替胁迫的叠加效应,在不同的旱、涝胁迫组合条件下,既可能表现为联合效应,也可能表现为补偿效应。为了探究旱涝互作对产量造成的影响,一些学者[7-10]设置不同旱涝水平的桶栽或盆栽试验,研究在不同生育期发生旱涝急转对产量及产量构成造成的影响,但由于采用的是单因素试验,旱涝水平设置过少,导致部分实验结果存在差异[11-12],且得出的结论仅实验组与正常组对比,对实际抗洪减灾的指导作用不强,未探究旱涝互作对产量造成的影响,因此也不能解释旱涝急转致灾机理与减产原因。
本文旨在通过设置不同旱涝组合形式,分析旱涝急转与极端旱涝减产规律的差异,量化先期旱与后期涝的补偿、削减作用,明确旱涝急转致灾机理,并从产量构成角度进一步解释减产原因。
1 材料与方法
1.1 试验地概况
试验地点位于淮委水科院新马桥试验站(117°22¢E,33°09¢N),属亚热带和热带过渡带,气候兼南北之长,四季分明,光照充足,年平均气温14.9℃,降雨量871 mm,日照2 170 h,平均海拔16.0~22.5 m。试验土取自临近稻田耕作层,土壤类型为砂姜黑土,土壤质地为中壤土,剖面构型自上而下依次为黑土层、脱潜层、砂姜层,土壤容重为1.24 g/cm3,土壤的田间持水量0.28 g/g,饱和含水量0.429 g/g。
1.2 试验设计
通过分析研究区旱涝急转事件历史统计资料发现,旱涝急转多发生于7月中下旬至8月中下旬[13],与水稻拔节孕穗期重合,因此本试验将旱涝急转设置在水稻拔节孕穗期。在参考国家受旱等级与排涝标准划分指标的基础上,参照崔远来[14],李阳生[15]等的试验研究,将旱、涝控制因素设置为:1)受旱程度:50%、60%、70%田间持水量;2)受旱历时:5、10、15 d;3)受涝淹没深度:50%、75%,100%株高;4)受涝历时:5、7、9 d。试验设置了9组不同旱涝急转组合处理DFAA1~DFAA9和1个对照处理CK。安排其中6组旱涝急转胁迫处理组(DFAA1~DFAA3,DFAA7~DFAA9)与旱、涝单一胁迫处理组(DC1~3,DC7~9和FC1~3,FC7~9)的对比方案,例如旱涝急转组DFAA1对应的单旱胁迫DC1和单涝胁迫FC1进行平行试验,试验设计方案见表1~表2。
表1 2016年水稻旱涝急转试验设计
Table 1 Experimental scheme fordrought-flood abrupt alternation of rice in 2016
注:表中DFAA为旱涝急转组;DC为单旱组;FC为单涝组;数字代表日期;实线表示受旱持续时间;虚线表示受涝持续时间。下同。
Note: DFAA means drought-flood abrupt alternation, DC means drought control, FC means flood control, numbers represent the date, solid line indicates the duration of drought, dashed line indicates the duration of flood. The same below.
表2 旱涝因素及水平设置
注:表中受旱程度是指土壤含水率占田间持水率的百分比;受涝程度是指淹水深度占株高的比例。旱指标(轻旱:70% 田持,中旱:60% 田持,重旱:50% 田持)与涝指标(轻涝:淹深50% 株高,中涝:淹深75% 株高,重涝:淹深100% 株高)。旱持续时间(短期:5 d,中期:10 d,长期:15 d)与涝持续时间(短期:5 d,中期:10 d,长期:15 d)。
Note: Drought degree means the ratio of soil moisture content to field water-holding rate, and flood degree means the ratio of flooding level to plant height; Drought index (light drought: 70% field water-holding rate,middle drought: 60% field water-holding rate, high drought: 50% field water-holding rate), flood index (light flood: 50% plant height,middle flood: 75% plant height,high flood: 100% plant height); Duration of drought (short-: 5 d, middle-: 10 d, long-: 15 d), duration of flood (short-: 5 d, middle-: 10 d, long-: 15 d).
1.3 试验材料
水稻供试品种为II优898。所有试验均在内径40 cm,高70 cm的大型有底铁桶中进行,在水稻全生育期内进行正常的农事管理。在无旱涝胁迫的生长时段,水稻进行正常淹灌,以保证水稻不受旱,利用遮雨棚使水稻不受雨涝。测桶内土壤的基本理化性质:pH值7.79,速效钾93.91 mg/kg,有效磷16.10 mg/kg,有机质8.59 g/kg,全氮632 mg/kg,碱解氮92.11 mg/kg。经晒干、打碎、过筛后,均匀施肥,底肥施用尿素3.0 g/筒,复合肥7.2 g/筒。旱涝急转试验条件见图1,淹水池结构见图2,供试水稻生育期见表3。
a. 受旱处理a. Drought treatmentb. 受涝处理b. Flood treatmentc. 正常组c. Natural condition
图2 淹水池结构图
1.4 测定项目与方法
1)控水方式
每天上午8:00和下午6:00测定试验组的每个测桶质量,2次称桶质量的差值即是当日白天的蒸发量。每天下午称桶质量和次日上午称桶质量之差则为当日夜间蒸发量。早晚称桶质量时均需对已到达含水率要求的测桶进行灌水,以控制达到对应的受旱程度。累计达到相应受旱程度时间后,将对应测桶移入淹水池中进行受涝试验。
每天上午9:00观察淹水池的水层深度后,灌排一定的水量使得淹水池的水位能够让最外围的测桶正常淹水。如遇阴雨天气,根据降水大小适时放水,控制淹水池深度以满足受涝试验要求。
表3 水稻各生育期起止日期及持续时间
注:CK为正常组;FC为单涝组;DC为单旱组;DFAA为旱涝急转组;D为持续时间。
Note: CK means normal control, FC means flooding control, DC means drought control, DFAA means drought-flood abrupt alternation,Dmeans duration.
2)产量及产量构成因素的测定
成熟后晒田一周,将每个处理的3个测桶进行收割,选取天气晴朗的2 d晾晒后烘干,然后依次考查每个测桶的穗数、每穗粒数、实粒数、瘪粒数,千粒质量以及产量。
3)旱涝互作效应的计算
为了消除不同光照、温度等外界因素的差异,本文采用水稻产量及产量构成因素相对值进行计算,其值等于试验组产量(产量构成)与正常组产量(产量构成)之比
式中DC为旱胁迫相对值,%;DC¢为旱胁迫产量(产量构成),g;FC为涝胁迫相对值,%;FC¢为涝胁迫产量(产量构成),g;DFAA为旱涝急转胁迫相对值,%;DFAA¢为旱涝急转胁迫产量(产量构成),g;CK¢为对照组产量(产量构成),g。
考虑先期旱对涝胁迫的影响,先期旱对涝胁迫的补偿作用为
考虑后期涝对旱胁迫的影响,后期涝对旱胁迫的补偿作用为
式中DC为先期旱对涝胁迫的补偿作用,%;FC为后期涝对旱胁迫的补偿作用,%。负值为联合削减作用,其他符号意义同前,此2式可用于计算产量、千粒质量、总粒数、结实率的旱涝胁迫补偿值。
2 结果与分析
2.1 旱涝急转下水稻减产规律分析
经计算,旱涝急转胁迫下产量及产量构成因素如图3所示。从图3a看出,旱涝急转组产量除了DFAA6略高于正常组外,其余各处理组均发生减产,说明在受旱程度:50%~70%田持;受旱时间:5~15 d;受涝程度:50%~100%株高;受涝时间:5~9 d范围内发生旱涝急转很可能会对产量造成损失,减产范围在30%以内,这可能是由于拔节期发生旱涝急转对水稻生育期的影响与对照组相比,延长了拔节孕穗期的持续天数,同时缩短了抽穗开花期的时间,而这一时期是水稻营养生长与生殖生长最旺盛的阶段,这一阶段由于水稻生长发育最快,所以对水、肥、光、热的需求量最大[16],如果缩短这一时期的持续时间将会影响对投入物的获取,减少水稻的粒数与粒质量从而导致减产。DFAA7减产30.3%,说明重旱重涝组合对产量最为不利。DFAA7对应总粒数削减30.6%,千粒质量削减4.2%,结实率补偿2.0%,在各处理中均处于下限值附近,花前总粒数减少,花后千粒质量减少结实率补偿不多可能是导致减产的主要原因。如图3b所示,总粒数形成处于旱涝胁迫期间,受旱涝直接作用,各处理均减少。DFAA7~DFAA9减少幅度最大在30%左右,因此重旱易引起总粒数的减少。如图3c~3d所示,千粒质量与结实率形成期处于旱涝急转排涝后复水期,未受到旱涝胁迫直接作用,各处理均接近或高于正常组,这可能与旱涝补偿作用的后效性[17-19]有关。
图3 旱涝急转组与正常组产量,总粒数,千粒质量及结实率的比较
2.2 涝胁迫对水稻受旱减产规律的影响分析
基于单一旱胁迫产量指标DC与旱涝急转产量指标DFAA,计算涝对旱胁迫的影响,结果见图4和表4。可得结论:单旱组与旱涝急转组对比,除了DFAA8、9高于单旱组处理,其余均低于单旱组,说明在受旱程度:50%~70% 田持;受旱时间:5~15 d;受涝程度:50%~100% 株高;受涝时间:5~9 d范围内,旱涝急转组很可能加重了单旱组减产损失。图4表明DFAA1、2、3、7组产量补偿作用FC分别为–25.8%、–28.0%、–30.8%、–33.9%,DFAA3和DFAA7联合削减作用最为严重,减幅超过30%,说明旱涝急转组(重涝)加重了旱胁迫减产损失,原因是重涝条件下水下光强不足,O2、CO2等气体扩散率受阻,光合速率减小,营养生长与生殖生长受到抑制,细胞膜损伤,从而加剧了旱条件下细胞生理活性的降低[20]。DFAA3和DFAA7对应总粒数削减作用分别为35.2%和33.9%,千粒质量补偿作用分别为3.2%和2.0%,结实率DFAA3补偿作用21.1%,DFAA7削减作用4.6%,DFAA7花前总粒数减少,花后千粒质量补偿不多结实率减少导致减产,DFAA3结实率虽有一定补偿,但由于总粒数削减作用过于严重,限制了最终产量的形成。
表4总粒数所有处理均发生旱涝削减现象,DFAA1、2、3、7、8、9组FC分别为–24.5%、–29.6%、–35.2%、–33.9%、–0.6%、–18.0%,DFAA3和DFAA7削减作用最强,说明旱涝急转组(重涝)加重了旱胁迫下总粒数的损失。旱涝急转组对于旱胁迫下千粒质量的影响,除了DFAA2组,其余各处理均发生旱涝补偿作用,DFAA1、3、7、8、9组FC分别为8.2%、3.2%、2.0%、2.7%、33.6%,DFAA9旱涝补偿作用明显,原因可能是长期重旱抑制了根系活力减少了吸水量,而短期轻涝诱导与补偿相关的基因表达,激发体内代谢合成酶的活性,使细胞膨压得以恢复,胞质浓度降低,生长速率增加,代谢活动加快,最终减轻了先期旱胁迫对千粒质量的影响[21]。结实率DFAA2、3、9发生旱涝补偿作用,FC分别为11.0%、21.1%、37.6%,同样DFAA9旱涝补偿作用显著,说明长期重旱和短期轻涝组合减轻了先期旱胁迫对结实率的影响。
注:Group1为DC1和DFAA1,group2为DC2和DFAA2,…,group9为DC9和DFAA9,下同。
2.3 旱胁迫对水稻淹涝减产规律的影响分析
基于单一涝胁迫产量指标FC与旱涝急转产量指标DFAA,计算先期旱对涝胁迫的影响,结果见表5和图5。可得结论:单涝组与旱涝急转组对比,DFAA1、3、9高于单涝组处理,以上3种组合旱涝急转组比单涝组产量补偿分别为20.8%、113.0%和14.2%,其中DFAA3旱涝补偿作用113.0%,说明在受旱程度:50%~70%田持;受旱时间:5~15 d;受涝程度:50%~100%株高;受涝时间:5~9 d范围内,旱涝急转组(长期轻旱)和单涝组(长期重涝)组合可以减少涝胁迫的减产损失,原因可能是长期轻旱促使水稻新生白根形成发达的通气组织,通气组织形成早可为后期涝胁迫产生有利影响[22]。DFAA3对应总粒数补偿11.7%,千粒质量补偿79.7%,结实率补偿118.4%,在各处理中均处于补偿上限,花前总粒数,花后千粒质量、结实率均有较大补偿是导致产量补偿作用显著的主要原因。
表4 涝胁迫对旱胁迫的补偿效应(AFC)
图5 旱涝急转组与淹涝组产量的比较
表5 旱胁迫对涝胁迫的补偿效应(ADC)
表5总粒数除了DFAA1、3发生补偿作用外,其余各处理均发生旱涝联合削减,DFAA2、7、8、9组DC分别为–20.1%、–33.7%、–31.9%、–22.7%,DFAA7和DFAA8削减31.9%~33.7%,说明重旱重涝组合或重旱与长期轻涝组合加重了涝胁迫下总粒数的损失。千粒质量和结实率所有处理均发生旱涝补偿作用,千粒质量DFAA1、2、3、7、8、9组DC分别为28.3%、2.0%、79.7%、14.0%、24.4%、61.4%,DFAA3和DFAA9补偿作用最强,说明前期旱胁迫促进了根系对养分的吸收,积累的中间产物为涝胁迫有机物合成提供了原料,成为补偿效应发生的有利条件,旱胁迫不仅促进根系生长发育,而且使茎秆延伸生长延缓,基部粗壮抗倒伏[23],叶片开度减小,减少淹涝期生理干旱,提高氧传递效率,改善对缺氧的抵抗能力,最终减轻了千粒质量在涝期的损失[24-25]。结实率DFAA1、2、3、7、8、9组DC分别为3.2%、20.1%、118.4%、5.5%、23.5%、54.3%,DFAA3和DFAA9补偿作用最强,同样说明长期旱胁迫减轻了结实率在涝期的损失。
3 讨 论
3.1 旱涝急转与极端旱涝减产规律差异性分析
旱涝急转下水稻受旱、涝同时作用,减产规律较正常淹灌条件不同[26-28]。彭世彰[29]等研究了不同生育阶段水分亏缺后复水干物质和产量的变化,得到分蘖后期较对照产量持平略有增加,拔节孕穗后期和抽穗开花期显著下降低于对照的结论。汪妮娜[30]等研究了不同生育期水分胁迫后复水对水稻生长及产量的影响,得到分蘖盛期轻度水分处理的地上部干重和稻谷产量最高,而抽穗扬花期则以对照最高。郭相平[31]等研究了旱涝交替胁迫对水稻产量和品质的影响,得到分蘖期有效穗数较对照组显著降低,拔节期穗粒数较对照组显著降低,水稻均有减产的结论。本试验结果旱涝急转较正常淹灌显著降低了水稻产量,与上述研究一致。邓艳[32]等在此基础上探讨了旱涝急转与极端旱涝的减产差异,得到穗分化期干旱较淹涝对水稻产量负面影响更大,旱涝急转存在叠加减产效应的结论,由于试验中旱涝组合仅有1组设置,因而试验结论有待推敲。本研究设置了不同旱涝急转组合处理,利用旱涝急转组与极端旱涝组对比,得到DFAA1、2、3、7产量小于单旱组,FC在–25.7%~–33.9%之间,DFAA8、9产量大于单旱组,FC在2.7%~18.5%之间,因此,旱涝急转组加重了旱胁迫(轻旱或短期重旱)减产作用,其中,DFAA3和DFAA7削减作用最强,所以在前期发生了轻旱或短期重旱的情景下,应尽量避免后期重涝发生。DFAA1、3、9旱涝急转组产量大于单涝组,DC在14.2%~113.0%之间,DFAA2、7、8旱涝急转组产量小于单涝组,DC在–4.0%~–27.8%之间,先期旱明显减轻了涝期减产损失,尤其是DFAA3旱涝急转组产量显著大于单涝组,DC为113.0%,说明在后期涝无法避免时,先期旱有效减轻了涝期减产损失。该研究成果可为探究旱涝急转致灾机理及减灾措施提供参考,但仍需要从旱涝补偿、削减作用的生理学机制得到证实。
3.2 旱涝补偿、削减作用对产量构成的影响
水稻籽粒用以贮存光合源,总粒数的多少限制最终产量的形成[33-34],而籽粒产量的80%来自于花后光合物质的积累[35-36],千粒质量及结实率决定时期为开花后,因此补偿现象可能与千粒质量和结实率有关。魏征[37]等研究了生育中期水分亏缺后复水对水稻产量及其构成因子的影响,得到穗数减少,千粒质量提高的结论。郭慧[38]等研究了水稻孕穗期水分胁迫后复水对产量及产量构成的补偿效应,得到穗数和穗粒数均有下降,轻度补偿效应高于重度甚至优于对照的结论。以上研究成果,产量构成没有与旱涝胁迫期、复水期对应,因而无法解释减产原因。蔡昆争[39]等研究了水稻不同生育时期干旱后复水对产量的补偿效应,得到分蘖期影响有效穗数,穗分化期影响有效穗数、每穗粒数和结实率,抽穗期影响每穗粒数、结实率和千粒质量,结实期影响结实率和千粒质量的结论,由于旱后复水属于浅水淹灌,涝水平设置过低且旱涝组合单一,因而所得结论无法指导旱涝灾害防治。本研究设置了不同旱涝组合试验,按照旱涝急转发生时期结合各产量构成因素形成物理过程,将水稻产量构成因素分为开花前总粒数与开花后千粒质量、结实率2部分进行讨论,采用产量构成因素法分析旱涝补偿、削减作用对产量的影响,得到DFAA3(没顶淹没9 d)和DFAA7(没顶淹没7 d)削减作用最强,FC分别为35.2%和33.9%,因此,DFAA3,7产量削减最强可能是由于涝期严重削减了总粒数所致。DFAA3(70%田持,受旱15 d,没顶淹没9 d)补偿作用明显,千粒质量和结实率DC分别为80.0%和118.4%,进而解释了DFAA3旱涝急转组产量大于单涝组的原因。该研究从产量构成的角度分析了旱涝急转胁迫下的减产原因,为研究旱涝急转下作物减产规律提供了1个新的视角,但还需结合作物叶片光合特性[40-42]做进一步探讨,有待进一步的试验资料对其进行验证。
4 结 论
通过2016年开展的不同旱涝水平的测桶试验,对比分析了在不同旱涝组合形式下旱涝急转组与正常淹灌组、单一受旱组、单一受涝组的减产规律,量化旱涝互作效应,通过产量构成的变化进一步解释了减产的原因,得到如下结论:
1)旱涝急转较正常淹灌显著降低了水稻产量,DFAA7(50%田持,受旱5 d,没顶淹没7 d)减产30.3%,说明重旱重涝组合对产量最为不利;DFAA7~DFAA9(50%田持,受旱5、10、15 d)减少幅度最大,长时间重旱使总粒数削减30%左右;各处理组千粒质量与结实率同时受控于旱涝胁迫的影响,均接近或高于正常组。
2)旱涝急转组与极端旱涝组对比,得到DFAA1、2、3、7旱涝急转组产量小于单旱组,DFAA3(没顶淹没9 d)和DFAA7(没顶淹没7 d)削减作用超过30%,因此,在前期发生了轻旱或短期重旱的情景下,应尽量避免后期重涝发生。DFAA1、3、9旱涝急转组产量大于单涝组,DFAA3(70%田持,受旱15 d,没顶淹没9 d)产量补偿113.0%,旱涝急转组产量显著大于单涝组,说明在后期涝无法避免时,先期旱有效减轻了涝期减产损失。
3)采用产量构成因素法分析旱涝补偿、削减作用对产量的影响,与单旱组对比,得到DFAA3(没顶淹没9天)和DFAA7(没顶淹没7 d)总粒数削减作用33.9%~35.2%,因此,DFAA3、7产量削减最强可能是由于涝期严重削减了总粒数所致,而DFAA9(50%田持,受旱15 d,淹深75%株高,淹涝5 d)相对于单旱组产量有所增加的原因可能是由于千粒质量和结实率分别补偿33.6%和37.6%,说明短期轻涝可以缓解长期重旱的不利影响。与单涝组对比,DFAA7(50% 田持,受旱5 d,没顶淹没7 d)和DFAA8(50%田持,受旱10 d,淹深50%株高,淹涝9 d)产量低于单涝组,原因可能是由于总粒数削减作用31.9~33.7%,说明前期重旱加重了重涝或长期轻涝下总粒数的损失。DFAA3(70%田持,受旱15 d,没顶淹没9 d)千粒质量和结实率分别补偿79.7%和118.4%,进而解释了DFAA3产量大于单涝组的原因。
[1] 沈柏竹,张世轩,杨涵洧,等. 2011年春夏季长江中下游地区旱涝急转特征分析[J]. 物理学报,2012,61(10)109-202. Shen Bai zhu, Zhang Shi xuan, Yang Han wei, et al. Analysis of characteristics of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in spring and summer in 2011[J]. Acta Phys Sin, 2012, 61(10): 109-202.(in Chinese with English abstract)
[2] 邓艳,陈小荣. “旱涝急转”对水稻生长发育的影响及其有关问题的思考[J]. 生物灾害科学,2013,36(2):217-222. Deng Yan, Chen Xiaorong. Effects of Drought-floods Abrupt Alternation on Growing Development of rice and consideration for Related Issues[J]. Biological Disaster Science, 2013, 36(2): 217-222. (in Chinese with English abstract)
[3] Yu Shuang’ en, Miao Zimei, Shao Guangcheng, et al. The crop-water level response model of rice under alternate drought and waterlogging[J]. Journal of Food, Agriculture & Environment, 2012, 10(3&4): 1515-1519.
[4] Yao F X, Huang J L, Peng S B, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation[J]. Field Crops Research, 2012, 126: 16-22.
[5] 周磊,甘毅,欧晓彬,等.作物缺水补偿节水的分子生理机制研究进展[J]. 中国生态农业学报,2011, 19(1):217-225. Zhou Lei, Gan Yi, Ou Xiaobin, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 217-225. (in Chinese with English abstract)
[6] 郭相平,甄博,陆红飞. 水稻旱涝交替胁迫叠加效应研究进展[J]. 水利水电科技进展,2013,33(2):83-86. Guo Xiangping, Zhen Bo, Lu Hongfei. Research advances in pile-up effects of drought and waterlogging alternative stress on rice[J]. Advances in Science and Technology of Water Resources, 2013, 33(2): 83-86. (in Chinese with English abstract)
[7] Cheng W, Zhang G, Zhao G, et al. Variation in rice quality of different cultivars and grain positions as affected by water management[J]. Field Crops Research, 2003, 80(3): 245-252.
[8] 曹睿哲,俞双恩,高世凯,等. 基于熵权TOPSIS模型水稻旱涝交替胁迫条件下排灌方案评价[J]. 中国农村水利水电,2017,59(3):45-49. Cao Ruizhe, Yu Shuang’en, Gao Shikai, et al. Evaluation of rice under alternating stress of drought and waterlogging based on entropy weight TOPSIS method[J]. China Rural Water and Hydropower, 2017, 59(3): 45-49. (in Chinese with English abstract)
[9] Suralta R R, Inukai Y, Yamauchi A. Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses[J]. Plant and Soil, 2010, 332(1): 87-104.
[10] 缪子梅,俞双恩,卢斌,等. 基于结构方程模型的控水稻“需水量-光合量-产量”关系研究[J]. 农业工程学报,2013,29(6):91-98. Miao Zimei, Yu Shuang’en, Lu Bin, et al. Relationships of ‘water requirement- photosynthesis- production’ for paddy rice using structural equation modeling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 91-98. (in Chinese with English abstract)
[11] 邵玺文,张瑞珍,齐春艳,等. 拔节孕穗期水分胁迫对水稻生长发育及产量的影响[J]. 吉林农业大学学报,2004,26(3):237-241. Shao Xiwen, Zhang Ruizhen, Qi Chunyan, et al. Effects of water stress on growth and yield of rice in jointing-booting stage[J]. Journal of Jilin Agricultural University, 2004, 26(3): 237-241. (in Chinese with English abstract)
[12] 王成瑷,王伯伦,张文香,等. 土壤水分胁迫对水稻产量和品质的影响[J]. 作物学报,2006,32(1):131-137. Wang Chengyuan, Wang Bolun, Zhang Wenxiang, et al. Effects of water stress of soil on rice yield and quality[J]. Acta Agronomica Sinica, 2006, 32(1): 131-137. (in Chinese with English abstract)
[13] 程智,徐敏,罗连升,等.淮河流域旱涝急转气候特征研究[J]. 水文,2012,32(1):73-79. Cheng Zhi, Xu min, Luo Liansheng, et al. Climate Characteristics of Drought-flood Abrupt Change Events in Huaihe River Basin[J]. Hydrology, 2012, 32(1): 73-79. (in Chinese with English abstract)
[14] 崔远来,茆智,李远华. 水稻水分生产函数时空变异规律研究[J]. 水科学进展,2002,13(4):484-491. Cui Yuanlai, Mao Zhi, Li Yuanhua. Study on temporal and spatial variation of rice water production function[J]. Advances in Water Science, 2002, 13(4): 484-491. (in Chinese with English abstract)
[15] 李阳生,彭凤英,李达模,等. 杂交水稻苗期耐淹特性及其与亲本的关系[J]. 杂交水稻,2001,16(2):50-53. Li Yangsheng, Peng Fengying, Li damo, et al. Relationship between hybrids and their parents on submergence tolerance at seedling stage[J]. Hybrid Rice, 2001, 16(2): 50-53. (in Chinese with English abstract)
[16] Zhang H, Tan Gll, Yang Lnn, et al. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice.[J]. Plant Physiology & Biochemistry, 2009,47(3):195-204.
[17] 郝树荣,郭相平,王文娟. 旱后复水对水稻生长的后效影响[J]. 农业机械学报,2010,41(7):76-79. Hao Shurong, Guo Xiangping, Wang Wenjuan. After effects of rewatering after water stress on the rice growth[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 76-79. (in Chinese with English abstract)
[18] Lin Xianqing, Zhou Weijun, Zhu Defeng, et al. Effect of SWD irrigation on photosynthesis and grain yield of rice ()[J]. Field Crop Research, 2005, 94 (1): 67-75.
[19] Zhang Zichang, Zhang Shenfeng, Yang Jianchang, et al. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation[J]. Field Crops Research, 2008, 108(1): 71-81.
[20] Ji X. M., Raveendran M., Oane R., et al. Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at Flowering[J]. Plant Molecular Biology, 2005,59(6): 945-964.
[21] Leandra L, Gustavo A P, Christine G, et al. Rewatering plants after a long water-deficit treatment reveals that leaf epidermal cells retain their ability to expand after the leaf has apparently reached its final size[J]. Annals of Botany, 2008, 101(7): 1007-1015.
[22] 甄博,郭相平,陆红飞. 旱涝交替胁迫对水稻分蘖期根解剖结构的影响[J]. 农业工程学报,2015,31(9):107-113. Zhen Bo, Guo Xiangping, Lu Hongfei. Effects of alternative stress of drought and waterlogging at tillering stage on rice root anatomical structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31 (9): 107-113. (in Chinese with English abstract)
[23] 郭相平,甄博,王振昌. 旱涝交替胁迫增强水稻抗倒伏性能[J]. 农业工程学报,2013,29(12):130-135. Guo Xiangping, Zhen Bo, Wang Zhenchang. Increasing lodging resistance performance of rice by alternating drought and flooding stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 130-135. (in Chinese with English abstract)
[24] González A, Martín I, Ayerbe L. Yield and osmotic adjustment capacity of barley under terminal water-stress conditions[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 81-91.
[25] Moral L F G, Rharrabti Y, Elhani S, et al. Yield formation in Mediterranean durum wheats under two contrasting water regimes based on path-coefficient analysis[J]. Euphytica, 2005, 146(3): 203-212.
[26] Iara Akhtar, Naveela Nazir. Effect of waterlogging and drought stress in plants[J]. International Journal of water resources and environmental sciences, 2013, 2(2): 34-40.
[27] Gaydon D S, Probert M E, Buresh R J, et al. Rice in cropping systems-Modelling transitions between flooded and non- flooded soil environments[J]. European Journal of Agronomy, 2012, 39(3): 9-24.
[28] Reddya A R, Chaitanyaa K, Vivekanandan M. Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202.
[29] 彭世彰,蔡敏,孔伟丽等. 不同生育阶段水分亏缺对水稻干物质与产量的影响[J]. 水资源与水工程学报,2012,23(1):10-13. Peng Shizhang, Cai Min, Kong Weili, et al. Effects of water deficit in different growing stages on yield and dry matter of rice[J]. Journal of Water Resources & Water Engineering, 2012, 23(1): 10-13. (in Chinese with English abstract)
[30] 汪妮娜,黄敏,陈德威等. 不同生育期水分胁迫对水稻根系生长及产量的影响[J]. 热带作物学报,2013,34(9):1650-1656. Wang Nina, Huang Min, Chen Dewei, et al. Effects of water stress on root and yield of rice at different growth stages[J]. Chinese Journal of Tropical Crops, 2013, 34(9): 1650-1656. (in Chinese with English abstract)
[31] 郭相平,杨骕,王振昌等. 旱涝交替胁迫对水稻产量和品质的影响[J]. 灌溉排水学报,2015,34(1):13-16. Guo Xiangping, Yang Su, Wang Zhenchang, et al. Effects of Alternative Stress of Drought and Waterlogging on Rice Yield and Quality[J]. Journal of Irrigation and Drainage, 2015, 34(1): 13-16. (in Chinese with English abstract)
[32] 邓艳,钟蕾,陈小荣. 穗分化期旱涝急转对超级杂交早稻产量和生理特性的影响[J]. 核农学报, 2017, 31(4):0768-0776. Deng Yan, Zhong Lei, Chen Xiaorong, et al. Effects of drought-flood abrupt alternation on physiological and yield characteristics in super hybrid early rice during panicle differentiation stage[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 0768-0776. (in Chinese with English abstract)
[33] Nakaide Y, Katsura K. Analysis of yield determinant factors of rice under upland condition based on sink-source balance[J]. Abstracts of Meeting of the Cssj, 2010, 79(3): 28-29.
[34] lida Y, Tsukaguchi T. Effects of high temperature on grain yield and quality of rice as affected by sink-source ratio[J]. Abstracts of Meeting of the Cssj, 2006, 221(3): 382-382.
[35] Masnatta W J, Ravetta D A. Seed-yield and yield components response to source-sink ratio in annual and perennial species of Lesquerella ()[J]. Industrial Crops and Products, 2011, 34(2): 1393-1398.
[36] Chen Yue, Yuan Longping, Wang Xuehua, et al. Relationship between grain yield and leaf photosynthetic rate in super hybrid rice[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 235-243.
[37] 魏征,彭世彰,孔伟丽,等. 生育中期水分亏缺复水对水稻根冠及水肥利用效率的补偿影响[J]. 河海大学学报(自然科学版),2010,38(3):322-326. Wei Zheng, Peng Shizhang, Kong Weili, et al. Compensation effects of roots and shoots of rice and water and fertilizer utilization efficiency owing to rewatering of water deficit during intermediate period of bearing[J]. Journal of Hohai University (Natural Sciences), 2010, 38(3): 322-326. (in Chinese with English abstract)
[38] 郭慧,马均,李树杏,等. 孕穗期水分胁迫对水稻部分生理特性与产量补偿效应的研究[J]. 南方农业学报,2013,44(9):1448-1454. Guo Hui, Ma Jun, Li Shuxing, et al. Effects of water stress on partial physiological characteristics and yield compensation in rice at booting stage[J]. Journal of Southern Agriculture, 2013, 44(9): 1448-1454. (in Chinese with English abstract)
[39] 蔡昆争,吴学祝,骆世明. 不同生育时期土壤干旱后复水对水稻生长发育的补偿效应[J]. 灌溉排水学报,2008,27(5):34-36. Cai Kunzheng, Wu Xuezhu, Luo Shiming. Compensatory effects of re-watering after soil drying on rice growth and Ddevelopment[J]. Journal of Irrigation and Drainage, 2008, 27(5): 34-36. (in Chinese with English abstract)
[40] 陆红飞,郭相平,甄博,等. 旱涝交替胁迫条件下粳稻叶片光合特性[J]. 农业工程学报,2016,32(8):105-111. Lu Hongfei, Guo Xiangping, Zhen Bo, et al. Photosythetic characteristics of Japonica rice leave under alternative stress of drought and waterlogging[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(8): 105-111. (in Chinese with English abstract)
[41] Smethurst CF, Shabala S. Screening methods for waterlogging tolerance in Lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content[J]. Functional Plant Biology, 2003, 30(3): 335-343.
[42] Van D S D, Zhou Z, Prinsen E. A comparative molecular- physiological study of submergence response in lowland and deep water rice[J]. Plant Phys, 2001, 125(2): 955-968.
高 芸,胡铁松,袁宏伟,杨继伟.淮北平原旱涝急转条件下水稻减产规律分析[J]. 农业工程学报,2017,33(21):128-136. doi:10.11975/j.issn.1002-6819.2017.21.015 http://www.tcsae.org
Gao Yun, Hu Tiesong, Yuan Hongwei, Yang Jiwei. Analysis on yield reduced law ofrice inHuaibei plainunder drought-flood abrupt alternation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 128-136. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.015 http://www.tcsae.org
Analysis on yield reduced law of rice in Huaibei plain under drought-flood abrupt alternation
Gao Yun1, Hu Tiesong1※, Yuan Hongwei2, Yang Jiwei2
(1.430072,233000,)
Drought and flood are important abiotic stresses negatively affecting plant growth and development. In recent years, the frequent occurrence of drought-flood abrupt alternation (DFAA) has made crops often need to bear double stresses of drought and flood. In order to explore the response of rice yield to the double stresses of DFAA, a field experiment was conducted using a mid-season Indica hybrid rice cultivar of II U 898 which is cultivated widely in Huaibei plain with 22 treatments of different drought degrees (50%, 60%, 70% field water-holding rate), different drought time (5, 10, 15 d), different submergence depths (1/2, 3/4, whole plant height) and different flooded time (5, 7, 9 d) in 2016. Twenty-two treatments included 6 treatments with drought followed by no flood (DC), 6 treatments with flood followed by no drought (FC), 9 treatments with DFAA and 1 treatment without drought and flood (CK). At drought stage, the barrels are moved to the side of flooded pool, and their weights are measured at 7:00 am and 6:00 pm daily. The barrels are added with water to meet the requirements of drought stress control. In order to avoid the impact of rain, the shelter is used in advance according to the weather forecast. At flood stage, the barrels are moved to different ladders of flooded pool according to the requirements of different submergence depths. The water level of flooded pool is measured with a ruler at 9:00 every morning, and a certain amount of water is irrigated so that the barrels are able to maintain different submergence depths. In case of rainy days, the flooded pool was drained timely to meet the requirements of flood stress control. The barrels of normal treatment have been placed on the top ladder of flood pool, keeping 2-3 cm water level. The compensation effect of the interaction between drought stress and flood stress on rice yield is calculated. The reason of reduction in yield under the interaction between drought and flood is analyzed, and the effect of the interaction on yield components is explored. It’s shown from the results that, compared with the normal group, the yield of DFAA group of combination of heavy drought and heavy flood was reduced by 30.3%, and the total grain number was decreased above 30% under long-term heavy drought, while the 1000-grain weight and seed setting rate of each treatment group were close to or higher than the normal group. Besides, compared with the drought group, the yield and total grain number of DFAA group (heavy flood) were reduced above 30% and 33.9%-35.2%, and 1000-grain weight and seed setting rate of DFAA group (short-term light flood) could respectively compensate for 33.6% and 37.6% compared with the drought group (long-term heavy drought). At last, compared with the flood group, the yield of DFAA group (long-term light drought) could compensate for 113.0% compared with the flood group (long-term heavy flood), the total grain number of DFAA group (heavy drought) was reduced by 31.9%-33.7% compared with the flood group (heavy flood or long-term light flood), and the 1000-grain weight and seed setting rate of DFAA group (long-term drought) could compensate for 79.7%-118.4% respectively compared with the flood group. The research results can provide a reference for exploring the mechanism of DFAA and disaster mitigation measures.
stresses; drought; irrigation; rice; yield reduction reason; drought-flood abrupt alternation; compensation
10.11975/j.issn.1002-6819.2017.21.015
S275.6
A
1002-6819(2017)-21-0128-09
2017-05-18
2017-09-12
国家自然科学基金资助项目:旱涝急转发生机理与减灾方法研究(51339004)
高 芸,博士生,主要从事农田排水等方面的研究工作。 Email:gaoyun130@whu.edu.cn
※通信作者:胡铁松,教授,主要从事水库调度与农田排水等方面的研究工作。Email:tshu@whu.edu.cn