Wnt信号通路与恶性肿瘤的研究进展
2017-05-27万小亚杨泽李阳
万小亚 杨泽 李阳
[摘要] Wnt信号通路是一条保守复杂的信号通路,调节干细胞自我更新、细胞增殖、分化及凋亡,参与胚胎发育、组织稳态及细胞癌变等。Wnt蛋白是一类富含L-半胱氨酸的分泌型糖蛋白,通过影响由结直肠腺瘤性息肉蛋白(APC)、轴蛋白(Axin)、糖原合成酶激酶-3β(GSK-3β)及酪蛋白激酶1(CK1)等组成的降解复合物的磷酸化作用调控胞质内β-catenin的浓度变化,参与Wnt信号通路的激活。经典Wnt/β-catenin通路的异常激活与人类恶性肿瘤密切相关。本文综述了该信号通路相关转录因子及与其他信号通路(Notch通路、TGF-β/BMP通路、Hedgehog通路、Hippo/YAP/TAZ通路)在肿瘤中的相互串话,进一步了解Wnt信号通路与肿瘤关系,为治疗提供潜在靶点。
[关键词] Wnt信号通路;β-catenin;Wnt蛋白;恶性肿瘤
[中图分类号] R730.23 [文献标识码] A [文章编号] 1673-7210(2016)12(c)-0071-04
[Abstract] The Wnt signaling pathway is a conserved and complex pathway that plays an important role in the regulation of stem cell self-renewal, proliferation, differentiation and apoptosis, involved in embryonic development, tissue homeostasis and cell carcinogenesis. Wnt proteins are a kind of secreted glycoprotein rich in L-Cysteine, and they can regulate the concentrations of β-catenin in the cytoplasm and take part in the activation of Wnt signal pathway by influencing the phosphorylation of destruction complex made up of adenomatous polyposis coli (APC), axial protein (Axin), glycogen synthase kinase 3 beta (GSK-3β), casein kinase 1 (CK1), and so on. The abnormal activation of classic WNT/β-catenin signal pathway is closely related to human malignant tumors. This paper reviews the cross-talk between the transcription factors of Wnt signal pathway and other signal pathways (Notch pathway, TGF-β/BMP pathway, Hedgehog pathway, Hippo/YAP/TAZ pathway), in order to know more about the relationship between Wnt signal pathway and cancer, and provide potential target for the treatment.
[Key words] Wnt signal pathway; β-catenin; Wnt protein; Malignant tumor
Wnt信号通路通常分为经典的Wnt(依赖β-catenin)信号通路和非经典Wnt(不依赖β-catenin)信号通路[1]。经典Wnt/β-catenin信号通路在增殖及生存方面有极为重要的作用,而非经典Wnt信号通路更多的与细胞分化、细胞极性及迁移有关[2-3]。
1 Wnt基因及蛋白
Wnt基因编码富含L-半胱氨酸的分泌型糖蛋白。Wnt蛋白通过自分泌或旁分泌与受体结合,激活胞内的信号传导分子,调节靶基因的表达[4-5]。Wnt蛋白的异常表达与多种疾病的发生有关:Wnt1、3a和10b过表达与乳腺癌的发生有关[6];Wnt1、2、3a和5b可诱导小鼠乳腺C57MG细胞系恶性转化[7]。
2 Wnt通路相關蛋白
2.1 Frizzled(Fzd)蛋白
Fzd蛋白为Wnt通路的受体蛋白。Wnt配体与Fzd中高度保守的富含半胱氨酸的配体结合区(CRD)结合后磷酸化低密度脂蛋白受体相关蛋白5/6(LRP5/6),并形成Fzd-LRP5/6异源三聚体复合物[8]。CRD区域氨基酸残基的突变会导致Fzd与Wnt相互作用的消失[9]。
2.2 β-级联蛋白(β-catenin)
β-catenin为Wnt通路的关键成分,由CTNNb1基因编码,N末端是GSK-3β磷酸化降解作用部位,而C末端则参与β-catenin与LEF/TCF的结合[10-11]。降解复合物中GSK-3β使游离β-catenin磷酸化,从而被E3泛素降解酶β-Trcp识别并被泛素蛋白酶体系统降解,从而保持胞质内游离β-catenin相对低浓度[12]。最新研究发现,高糖可诱导β-catenin的乙酰化,增强癌症相关的Wnt/β-catenin信号通路[12]。
2.3 Dishevelled(Dvl/Dsh)蛋白
Dvl蛋白是关键胞浆蛋白,含有氨基端DIX区、中间PDZ区及羧基端DEP区。Dvl穿梭于胞质与胞核间将Wnt信号传导到β-catenin的降解复合物,维持β-catenin的稳定[13],Dvl的核定位域突变可抑制Wnt信号。近年已发现转录因子FOX(FOXK1、FOXK2)可通过促进Dvl的核转移正向调控Wnt信号通路[14]。
2.4 R-spondin(RSPO)蛋白
RSPO蛋白家族包括4個成员(Rspo1-4),包含4个主要功能区:2个富含半胱氨酸的furin-like结构域(CR)、1个血小板反应蛋白1型结构域(TSP1)以及富含碱性氨基酸的C端区域。CR区域主要参与Wnt/β-catenin信号通路的激活[15]。RSPO对经典Wnt信号通路的激活可能依赖于对LRP5/6受体的磷酸化[16]。RSPO对LGR蛋白有高度亲和力,并且通过与该蛋白受体作用抑制E3泛素连接酶,降解Fzd受体,导致Wnt信号通路的激活[17]。
3 Wnt/β-catenin信号通路(经典Wnt通路)
经典Wnt信号通路的作用机制已基本阐明:当Wnt信号存在时,Wnt蛋白与Fzd家族特异受体结合,并在单次跨膜辅助性共受体(如LRP5/6和受体酪氨酸激酶样受体2ROR2)的协助下,活化胞质内Dvl蛋白,触发细胞内的信号转导[8]。活化的Dvl蛋白能抑制由APC、Axin、GSK-3β、CK1等形成的降解复合物中关键成分GSK-3β的活性[2],使效应分子β-catenin不能被GSK-3β磷酸化,因而β-catenin不能被胞质内泛素蛋白酶体识别和降解,导致β-catenin在胞质中积聚并发生核转移[10],核转移的β-catenin代替Groucho蛋白与BCL9、Pygopus、组蛋白修饰蛋白CBP及组织特异性转录激活因子形成复合物并与T细胞因子/淋巴增强因子复合物(TCF/LEF)结合[18],最终激活下游靶基因的表达。
4 非经典Wnt信号通路
非经典Wnt信号通路包括Wnt/Ca2+通路和Wnt/PCP通路。前者通过钙依赖性激酶、钙调蛋白和转录因子NF-AT发挥效应,调节细胞运动和细胞黏着性[1]。此外,研究发现,Wnt/Ca2+信号通路可以通过激活CamK-Ⅱ,抑制β-catenin-TCF/LEF复合体活化基因的转录从而拮抗经典WNT信号通路[1,19]。Wnt/PCP通路主要参与细胞极性的构建及细胞骨架重排,调节细胞骨架的不对称分布和上皮细胞的协同极化[20]。
5 Wnt信号通路与其他信号通路的交叉串话
由于Wnt信号通路对靶细胞的影响广泛,与其他信号通路的交叉串话影响细胞增殖、分化及组织稳态,从而使得其生物学作用更加复杂。与该通路串化有关的信号通路常见有下述几个:
5.1 Wnt信号通路与Notch信号通路
在不同的组织中,Wnt与Notch信号通路既可表现出拮抗作用,也可表现出协同作用。研究发现,Notch信号通路可通过β-catenin抑制Wnt信号通路[21],并且,Wnt信号激活后可以通过Dvl拮抗Notch信号[22]。Notch信号通路在神经母细胞瘤和人舌癌细胞系中,可抑制Wnt信号通路[23],而在APC突变的小鼠肠内促进Wnt信号的转导,从而促进腺瘤的发展[24]。
5.2 Wnt信号通路与TGF-β/BMP信号通路
TGF-β Ⅱ型受体敲除后能促进Wnt3a的表达及前列腺癌的发生[25]。Smad7可直接与β-catenin结合并通过募集Smurf2诱导β-catenin降解[26],但在前列腺癌中,Smad7可直接引起β-catenin蓄积。研究报道,Wnt和BMP通过Dvl与磷酸化的Smad1直接作用在细胞质水平表现为相互拮抗作用[27]。因此,Wnt信号通路与TGF-β/BMP信号通路可以表现为协同作用和拮抗作用。
5.3 Wnt信号通路与Hedgehog信号通路
基底细胞癌中,Hedgehog信号异常可引起Wnt信号转录因子的高表达[28]。在结肠癌中,Wnt/β-catenin信号通路增加Hedgehog信号和结肠癌细胞的存活率[29]。然而,在肠腺瘤细胞中,降低跨膜蛋白质受体Smoothened(Smo)的表达可抑制经典Wnt信号通路[30]。在结肠上皮分化中,配体Ihh为Wnt信号的抑制剂[31]。在胃癌细胞中也发现Gli-1过表达能抑制Wnt信号[32]。
5.4 Wnt信号通路与Hippo/YAP/TAZ信号通路
尽管YAP/TAZ的核转移及定位是Hippo信号通路具有转录活性的必要条件,但非核区的TAZ对经典Wnt通路极为重要[33]。Hippo通路的效应分子TAZ通过与Dvl结合,干扰Wnt通路对Dvl的磷酸化,从而抑制Wnt通路;胞质内的YAP也可通过抑制Dvl的活性抑制Wnt通路[34]。最新研究发现,YAP/TAZ为转换Wnt信号通路(the alternative Wnt signaling pathway)的下游效应器,在经典Wnt信号通路中,Wnt5a/b和Wnt3a能诱导YAP/TAZ活化,称为“转换Wnt-YAP/TAZ信号轴”,该信号轴诱导YAP/TAZ的活化及TEAD介导的转录,从而激活YAP/TAZ介导的转换Wnt信号通路的生物学功能[35]。
6 小结
随着研究的不断深入,近十年来对Wnt信号通路的调节机制及复杂性有了更深入的了解,但其机制的某些重要细节仍未完全阐明。Wnt信号通路新成员(RSPOs、LGRs、NZRF3/RNF43、PORC、TANKS)与信号调节及组织生长等有重要关系。更深入地了解Wnt信号通路的调节机制对研发以该信号通路为靶点的恶性肿瘤的治疗极为重要[36]。
[参考文献]
[1] Anastas JN,Moon RT. WNT signalling pathways as therapeutic targets in cancer [J]. Nat Rev Cancer,2013,13(1):11-26.
[2] MacDonald BT,Tamai K,He X. Wnt/beta-catenin signaling:components,mechanisms,and diseases [J]. Dev Cell,2009,17(1):9-26.
[3] Ara H,Takagishi M,Enomoto A,et al. Role for Daple in non-canonical Wnt signaling during gastric cancer invasion and metastasis [J]. Cancer Sci,2016,107(2):133-139.
[4] Willert K,Brown JD,Danenberg E,et al. Wnt proteins are lipid-modified and can act as stem cell growth factors [J]. Nature,2003,423(6938):448-452.
[5] B?覿nziger C,Soldini D,Schütt C,et al. Wntless,a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells [J]. Cell,2006,125(3):509-522.
[6] Grigoryan T,Wend P,Klaus A,et al. Deciphering the function of canonical Wnt signals in development and disease:conditional loss- and gain-of-function mutations of beta-catenin in mice [J]. Genes Dev,2008,22(17):2308-2341.
[7] Qiang Y,Walsh K,Yao L,et al. Wnts induce migration and invasion of myeloma plasma cells [J]. Blood,2005,106(5):1786-1793.
[8] Bilic J,Huang Y,Davidson G,et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation [J]. Science,2007,316(5831):1619-1622.
[9] Bhanot P,Brink M,Samos CH,et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor [J]. Nature,1996,382(6588):225-230.
[10] Cavallo RA,Cox RT,Moline MM,et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity [J]. Nature,1998,395(6702):604-608.
[11] Arce L,Pate KT,Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression [J]. BMC Cancer,2009,9:159.
[12] Chocarro-Calvo A,García-Martínez JM,Ardila-González S,et al. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer [J]. Mol Cell,2013,49(3):474-486.
[13] Gan X,Wang J,Xi Y,et al. Nuclear Dvl,c-Jun,beta-catenin,and TCF form a complex leading to stabilization of beta-catenin-TCF interaction [J]. J Cell Biol,2008, 180(6):1087-1100.
[14] Wang W,Li X,Lee M,et al. FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus [J]. Dev Cell,2015,32(6):707-718.
[15] Kim K,Wagle M,Tran K,et al. R-Spondin family members regulate the Wnt pathway by a common mechanism [J]. Mol Biol Cell,2008,19(6):2588-2596.
[16] Wei Q,Yokota C,Semenov MV,et al. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling [J]. J Biol Chem,2007,282(21):15903-15911.
[17] Koo B,Spit M,Jordens I,et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors [J]. Nature,2012,488(7413):665-669.
[18] Kramps T,Peter O,Brunner E,et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex [J]. Cell,2002,109(1):47-60.
[19] Clevers H,Loh KM,Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration:Wnt signaling and stem cell control [J]. Science,2014, 346(6205):1248012.
[20] Oishi I,Suzuki H,Onishi N,et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway [J]. Genes Cells,2003,8(7):645-654.
[21] Hayward P,Brennan K,Sanders P,et al. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity [J]. Development,2005,132(8):1819-1830.
[22] Axelrod JD,Matsuno K,Artavanis-Tsakonas S,et al. Interaction between Wingless and Notch signaling pathways mediated by disheveled [J]. Science,1996,271(5257):1826-1832.
[23] Revet I,Huizenga G,Koster J,et al. MSX1 induces the Wnt pathway antagonist genes DKK1,DKK2,DKK3,and SFRP1 in neuroblastoma cells,but does not block Wnt3 and Wnt5A signalling to DVL3 [J]. Cancer Lett,2010, 289(2):195-207.
[24] Fre S,Pallavi SK,Huyghe M,et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine [J]. Proc Natl Acad Sci U S A,2009, 106(15):6309-6314.
[25] Li X,Placencio V,Iturregui JM,et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis [J]. Oncogene,2008,27(56):7118-7130.
[26] Han G,Li AG,Liang Y,et al. Smad7-induced beta-catenin degradation alters epidermal appendage development [J]. Dev Cell,2006,11(3):301-312.
[27] Song J,McColl J,Camp E,et al. Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells [J]. Proc Natl Acad Sci U S A,2014, 111(20):7337-7342.
[28] Yang SH,Andl T,Grachtchouk V,et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling [J]. Nat Genet,2008,40(9):1130-1135.
[29] Noubissi FK,Goswami S,Sanek NA,et al. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA [J]. Cancer Res,2009,69(22):8572-8578.
[30] Pasca di Magliano M,Biankin AV,Heiser PW,et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma [J]. PLoS One,2007,2(11):e1155.
[31] van den Brink GR,Bleuming SA,Hardwick JC,et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation [J]. Nat Genet,2004, 36(3):277-282.
[32] Ohta H,Aoyagi K,Fukaya M,et al. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers [J]. Br J Cancer,2009,100(2):389-398.
[33] Ramos A,Camargo FD. The Hippo signaling pathway and stem cell biology [J]. Trends Cell Biol,2012,22(7):339-346.
[34] Heallen T,Zhang M,Wang J,et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size [J]. Science,2011,332(6028):458-461.
[35] Park HW,Kim YC,Yu B,et al. Alternative Wnt Signaling Activates YAP/TAZ [J]. Cell,2015,162(4):780-794.
[36] Thomas AG,Stathis M,Rojas C,et al. Netupitant and palono?鄄 setron trigger NK1 receptor internalization in NG108-15 cells [J]. Exp Brain Res,2014,232(8):2637-2644.
(收稿日期:2016-10-02 本文編辑:张瑜杰)