APP下载

求函数值域的问题

2017-04-17白燕峰

中学课程辅导·教学研究 2017年4期
关键词:重点难点解题方法

白燕峰

摘要:函数的值域是函数的重要性质之一,也是学习中的难点之一。求函数的值域在知识上,除涉及函数的所有知识外,还需要不等式等其他重要知识点;在解题方法上,具有较强的综合性,学生在学习数学过程中,函数是重要的内容,既是重点也是难点。

关键词:函数值域;解题方法;重要内容;重点难点

中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2017)02-0107

求函数的值域是学生感到棘手的问题,它所涉及的知识面广,方法灵活多样,在考试中经常出现,若方法运用得当,就能起到化繁为简、事半功倍的作用。本文就函数值域的常用求法归纳如下,供参考。

其一,配方法:主要是针对二次函数或可化成二次函数型的最值及值域问题,可用此法。

例:1. 求函数y=-x2+2x+3的值域

解析:y=-(x-1)2+4,当x=1时,y最大=4,所以,值域是(-∞,4]。

2. 求函数y=32x+2·3x-1在[0,1]上的最大值。

解析:令3x=t,则y=t2+2t-1=(t+1)2-2

x∈[0,1],t∈[1,3],当t=3时,y最大=14

其二,换元法:若函数表达式中含有根式、分式、指数式、对数式等,可考虑用此方法:

例:1. 求函数f(x)=x+2 的最大值。

解析:方法一:设 =t t≥0,x=1-t2

y=-(t-1)2+2,当t=1即x=0时,y最大=2

方法二:利用导数法,定义域是{x/x≤1}

f ′(x)=1- 由f ′(x)=0,得x=0

当x<0时,f′(x)>0,f(x)为增函数

当0

当x=0时,f(x)最大=f(0)=2

2. 求函数y=x+y=x+ 的值域

解析:换元法 由4-x2≥0,知-2≤x≤2

设x=2cos,θ∈[0,π],则y=2cosθ+ =2cosθ+2sinθ=22 (θ+ )

∵θ+ ∈[ , ],∴sin(θ+ )∈[ ,1]

∴y∈[-2,2 ]

其三,导数法(利用函数单调性)

函数y=ax+ (a>0,b>0)被称为对勾函数,以此为背景的考题,曾是考试热点。

例:谈论函数f(x)=ax+ (a>0,b>0)的单调性

解析:f ′(x)=a- 令f ′(x)=0 ax2-b=0 x=±

当f ′(x)>0 x> 或x<-

当f ′(x)<0 -

f(x)在(-∞,- ],[ ,+∞)上是增函数

f(x)在[- ,0),(0, ]上是减函数

2. 求函数f(x)=x+ 在[3,+∞]的最小值

解析:此函数是对勾函数,由其性质,知f(x)在[3,+∞]上是增函数,所以,其最小值是 。

其四,分离常数法

例:1. 求函数y= 的值域

解析:y=2+ 其值域是{y/y≠2}

2. 求y= 的值域

解析:法一:分离常数法,y= 由2x-1>-1

知 <2或 >0,∴y>1或y<1

法二:反函数法2x= ,x=log2

由 >0,得y>1或y<-1。

3. 求函数y= (x>1)的最小值。

解析:∵x>-1,∴x+1>0

原式= =x+1+ +5≥2 +5=9

当且仅当x+1= ,x=1时,等号“=”成立

∴当x=1时,原函数的最小值为9。(先分离常数,再用不等式法求最小值)

其五,不等式法

例:已知:x>0,y>0 ,且 + =1,求x+y的最小值。

方法一:把求二元函数f(x,y)=x+y,转化为一元函数。由 + =1得y= =9+ ,由x>0y= >0得x>1

∵x+y=x+9+ =x-1+ +10≥2 +10=16當且仅当x-1= 即:x=4时,上式取“=”号

∴x+y的最小值是16。

方法二:对二元函数也可转化为 + 型函数,然后再用均值不等式。

(上接第107页)

∵ + =1∴x+y=(x+y)( + )=10+ + ≥16当且仅当 = ,即:x=4,y=12时,上式取“=”号

∴x+y的最小值为16。

其六,线性规划问题,求目标函数的最值问题

例:已知x,y满足约束条件x≥1x-3y≤-43x+5y≤30

①求目标函数,y=2x+y的最值

②求y= 的取值范围

③求y=x2+y2的取值范围

其七,数形结合法,函数表达式具有明显的某种几何定义,如两点距离、直线斜率等,用此方法会更加简单、一目了然。

例:1. 求函数y= + 的值域

解析:y=x-2+x+8可看成数轴上点x与点2与点-8的距离之和,∴y∈[10,+∞)

2. 求函数y= = 的值域

解析:上式可变形为:

y= -

= =

上式可看成在坐标平面内动点P(x,0)到定点A(3,2)与B(-2,1),距离之差。

即:y=AP-BP

由AP-BP≤AB=

∴- ≤y≤

y∈[- , ]

(作者单位:山西省忻州职业技术学院 034000)

猜你喜欢

重点难点解题方法
突破数学解答题,重点难点不丢分
卤代烃重点难点例析
结合政治高考题型提升复习备考效益研究
百花齐放,多种方法助力中考数学
高中数学解题思路探讨
高中数学函数解题思路多元化的方法举例探索
排列组合的几种解题方法分析
浅析高中数学解题方法和技巧
第2讲 物质构成的奥秘
第3讲 物质的化学变化