APP下载

机插方式和密度对不同穗型水稻品种产量及其构成的影响

2016-10-25胡雅杰钱海军曹伟伟邢志鹏张洪程戴其根霍中洋许轲魏海燕郭保卫

中国水稻科学 2016年5期
关键词:枝梗粒数穗数

胡雅杰 钱海军 曹伟伟 邢志鹏 张洪程 戴其根 霍中洋 许轲 魏海燕 郭保卫

(扬州大学 农业部长江流域稻作技术创新中心/江苏省作物遗传生理国家重点实验室培育点, 江苏 扬州 225009;*通讯联系人, E-mail: hczhang@yzu.edu.cn)



机插方式和密度对不同穗型水稻品种产量及其构成的影响

胡雅杰钱海军曹伟伟邢志鹏张洪程*戴其根霍中洋许轲魏海燕郭保卫

(扬州大学 农业部长江流域稻作技术创新中心/江苏省作物遗传生理国家重点实验室培育点, 江苏 扬州 225009;*通讯联系人, E-mail: hczhang@yzu.edu.cn)

HU Yajie, QIAN Haijun, CAO Weiwei, et al. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin J Rice Sci, 2016, 30(5): 493-506.

为探明不同机插方式下水稻适用穗型和适宜栽插规格,阐明不同机插方式下不同穗型水稻品种产量形成特征,选用大、中和小穗型各2个品种为试验材料,设置钵苗机插(行距33 cm)、行距30 cm毯苗机插和行距25 cm毯苗机插3种机插方式(记为A、B、C),研究机插方式和密度对不同穗型水稻品种产量及其形成和穗部性状的影响。钵苗机插设置3种株距,分别为12 cm、14 cm和16 cm(记为1、2、3),2种行距毯苗机插设置5种株距,分别为10 cm、11.7 cm、13.3 cm、14.8 cm、16 cm(记为1、2、3、4、5)。研究结果表明:1)钵苗机插,随着密度降低,大穗型品种产量呈先增后减,以A2最高;中、小穗型品种产量呈递减趋势,以A1最高。毯苗机插,随着密度降低,大穗型品种B方式产量呈先增后减,以B4最高,C方式呈递增趋势,以C5最高;中穗型品种B和C方式产量均呈先增后减,分别以B3和C4最高;小穗型品种B方式产量呈递减趋势,以B1最高,C方式呈先增后减,以C2最高。同一密度下,钵苗机插产量显著高于毯苗机插,增产幅度表现为大穗型>中穗型>小穗型,2种行距毯苗机插差异不显著。对2种行距毯苗机插而言,同一株距下,大穗型品种B方式产量高于C方式;中穗型品种株距为10 cm、11.7 cm、13.3 cm,B方式产量高,而株距为14.8 cm、16 cm,C方式产量高;小穗型品种除株距为10 cm外,C方式较B方式具有增产优势。2)随着密度降低,不同机插方式下不同穗型品种单位面积穗数减少,每穗粒数增加,群体颖花量变化趋势与产量一致,结实率和千粒重变化不一。同一密度下,不同机插方式间单位面积穗数相当,钵苗机插每穗粒数显著高于毯苗机插,每穗粒数增幅表现为大穗型>中穗型>小穗型,结实率和千粒重差异不显著。对2种行距毯苗机插而言,同一株距下,B方式单位面积穗数少于C方式,而每穗粒数则相反。3)随着密度降低,不同机插方式下不同穗型品种穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数呈增加趋势,一、二次枝梗数比值和一、二次枝梗粒数比值呈减少趋势。同一密度下,钵苗机插穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数高于毯苗机插。因此,钵苗机插应用大穗型品种宜适当降低密度,充分发挥大穗优势,提高群体颖花量而高产;中、小穗型品种宜采用高密度栽插,增加穗数以获得高产。毯苗机插应用大穗型品种宜采用行距30 cm,适当增加株距,依靠扩大穗型而高产;中穗型品种宜采用行距30 cm,配置中等密度,协调穗粒结构而提高群体颖花量;小穗型宜采用行距25 cm,适当减少株距,通过显著增加穗数以获得高产。

钵苗机插; 毯苗机插; 株行距; 产量; 产量构成; 穗部性状

探索研究新型水稻机械化种植方式及其高产形成特征一直是生产上的研究热点和重点[1-4]。目前,我国主体水稻机插方式是20世纪80年代引进日本插秧机及其工厂化育秧技术并加以本土化而发展形成的盘育毯状小苗机插(简称毯苗机插)。毯苗机插水稻凭借其高产高效和省工省力优势,近三十多年推广面积不断扩大,对保障我国粮食生产安全和提升水稻全程机械化水平发挥了重要作用[5-7]。当前生产上应用的毯苗机插水稻行距为30 cm,但江苏、江西、湖南等省稻农普遍反映机插行距偏大,穴数较少,基本苗偏少,导致有效穗数不足,限制机插稻产量潜力发挥[8-11]。而有研究认为机插稻超高产应适当扩大行株距,降低移栽密度,减少基本苗,增加田间通风透光条件,提高水稻中后期群体质量,主攻大穗[12-13]。国内外学者就行株距或移栽密度对毯苗机插水稻产量的影响研究报道较多[14-21],李世峰等[17]和彭长青等[18]认为毯苗机插水稻移栽密度过小或过大均不利于高产,小棵密植利于个体与群体生长发育。尽管前人针对毯苗机插水稻不同移栽密度进行了研究,但结果不尽一致。

同时,毯苗机插还存在以下问题:秧龄弹性小(秧龄15~20 d),茬口季节紧张,易造成超秧龄,且播种密度大、秧苗素质不高,加之移栽植伤重,返青期长,生育期缩短,限制了水稻品种产量潜力,特别是杂交稻品种不适用毯苗机插[22-23]。因此,生产上亟待研发能够克服毯苗机插不足的新型插秧机及配套高产栽培技术,做到农机农艺有机融合,而钵苗机插水稻实现了钵育长秧龄壮苗的机械化有序精确无植伤栽植,可能是我国多数稻区种植机械化的重要途径。早在1998年,江苏省农机推广站就引进日本RX-6型水稻钵苗移栽机进行了初步试验,由于该机进口价格昂贵,未能大面积推广应用[24]。之后,中国农业大学、黑龙江八一农垦大学和吉林省农机推广站等单位相继开展了水稻钵苗行栽机的研制及试验示范[25-26]。自2010年以来,常州亚美柯机械装备有限公司全套引进并吸收改进了日本水稻钵苗栽插机械及其配套装备,扬州大学联合国内多家单位开展了水稻钵苗机插高产栽培试验示范研究,结果证明水稻钵苗机插较毯苗机插具有明显的增产优势[27]。

然而,如何因种选用不同插秧机机型,如何因品种因机型配置适宜栽插规格,生产上还缺乏理论与技术的指导。因此,开展不同机插方式和密度对不同穗型水稻品种产量及其形成的影响研究,阐明不同机插方式水稻产量及其形成特征,探明不同穗型品种配套机型和适宜栽插密度,以期为大面积机插水稻生产提供理论与技术支持。

1 材料与方法

1.1试验地点

试验于2013-2014年在扬州大学农学院校外试验基地江苏省兴化市钓鱼镇(33°05′N,119°58′E)进行。该区位于江苏里下河腹部,属北亚热带湿润气候区,年平均温度15℃左右,年降水量1024.8 mm左右,全年日照时数2305.6 h左右,无霜期227 d左右。两年水稻生长季节温度、降水量和日照等气象资料见图1。试验地前茬为小麦(产量约6.7 t/hm2),土壤类型勤泥土,质地黏性。2013年和2014年0-20 cm土层有机质含量分别为24.8 g/kg和24.9 g/kg,全氮1.6 g/kg和1.6 g/kg,速效磷含量12.8 mg/kg和13.1 mg/kg,速效钾含量141.5 mg/kg和136.8 mg/kg。

1.2供试材料

选取具有不同穗质量的24个品种或组合进行预备试验,在统一高产栽培管理条件下,充分发挥其产量潜力,成熟期按平均单穗质量进行聚类分析,即按欧氏距离长短划分为大穗型(平均单穗质量≥5 g)、中穗型(3 g<平均单穗质量<5 g)和小穗型(平均单穗质量≤3 g) 3类。每种穗型各选取2个最具代表性品种或组合进行正式试验,大穗型品种为甬优2640和甬优8号,中穗型品种为武运粳24号和宁粳3号,小穗型品种为淮稻5号和淮稻10号。

1.3试验设计

采用裂区设计,品种为主区,机插方式为裂区,密度处理为再裂区,重复3次,共234个小区,小区面积20 m2。试验设置水稻钵苗机插和水稻毯苗机插2种机插方式,毯苗机插又设置2种机插行距,分别为30 cm和25 cm。为便于比较研究,将钵苗机插、行距30 cm毯苗机插和行距25 cm毯苗机插分别记为A、B、C。同时,根据不同插秧机机型设置株距,钵苗机插方式下设置3种株距,分别为12 cm、14 cm、16 cm,记为1、2、3;行距30 cm毯苗机插和行距25 cm毯苗机插,设置5种株距,分别为10.0 cm、11.7 cm、13.3 cm、14.8 cm、16.0 cm,记为1、2、3、4、5。为了便于数据分析,对机插方式和株距进行组合编号,具体见表1。

2013年和2014年,钵苗机插采用特制塑料钵体硬盘旱育秧,5月18日和5月20日播种,6月17日和6月19日机插,秧龄均为30 d;毯苗机插采用塑料软盘旱育秧,5月30日和6月2日播种,6月17日和6月19日机插,秧龄均为18 d。根据钱银飞等[21]和李刚华等[28]关于不同穗型水稻品种每穴适宜苗数的研究结果,确定大穗型品种每穴栽插2苗,中穗型品种每穴栽插3苗,小穗型品种每穴栽插4苗。

总施纯氮300 kg/hm2,m基蘖肥∶m穗肥=6∶4,其中基肥和分蘖肥各占50%,穗肥分两次等量施用;氮磷钾配比为mN∶mP2O5∶mK2O=1∶0.4∶0.8,磷肥全作基肥一次施用,钾肥分两次施用,其中基肥和促花肥各占50%。机插时薄水移栽活棵,分蘖期稳定的浅水层灌溉;在有效分蘖临界叶龄的前一个叶龄(N-n-1),茎蘖数达到预期穗数的80%时,开始排水搁田;拔节至成熟期实行湿润灌溉,干干湿湿,直至收获前5~7 d。病虫草害防治按当地大面积生产统一实施。

图12013和2014年水稻生长季节日照、平均温度、降水量

Fig.1. Sunshine hours, mean temperature and precipitation during the growth season of rice in 2013 and 2014.

表1不同机插方式水稻基本苗构成

Table 1. Basic seedlings of rice under various mechanical transplantion methods.

处理Treatment行株距Row-plantspacing/cm密度Density/(×104·hm-2)大穗型Largepanicle-typedvariety穴苗数Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)中穗型Mediumpanicle-typedvariety穴苗数Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)小穗型Smallpanicle-typedvariety穴苗数Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)A133×1225.5251.0376.54102.0A233×1421.0242.0363.0484.0A333×1619.5239.0358.5478.0B130×1033.0266.0399.04132.0B230×11.728.5257.0385.54114.0B330×13.325.5251.0376.54102.0B430×14.822.5245.0367.5490.0B530×1621.0242.0363.0484.0C125×1040.5281.03121.54162.0C225×11.734.5269.03103.54138.0C325×13.330.0260.0390.04120.0C425×14.827.0254.0381.04108.0C525×1625.5251.0376.54102.0

1.4测定内容与方法

1.4.1产量测定

成熟期采用五点法每小区普查50穴,计算有效穗数,每小区按平均穗数取10穴测定每穗粒数和结实率;取1 000实粒种子(含水率14%)称重,重复 3次,求取千粒重;并实收核产。

1.4.2穗部性状调查

每小区按平均穗数取10穴进行考种,分穗长、一次枝梗、二次枝梗等考查穗部性状。着粒密度(粒/cm)=每穗粒数/穗长;一、二次枝梗数比值=一次枝梗数/二次枝梗数;一、二次枝梗粒数比值= 一次枝梗粒数/二次枝梗粒数。

1.5数据处理

采用Microsoft Excel 2003进行数据处理,运用SPSS 16.0软件进行统计分析,用Origin 8.0作图。由于两年数据趋势基本一致,除产量数据外,其他数据以2013年数据进行分析。

2 结果与分析

2.1产量及其构成

两年不同穗型水稻品种产量的方差分析结果表明(表2),年度、品种、处理(机插方式和密度)间的互作达极显著水平,且F值表现为处理>品种>年度。互作效应方面,年度与品种二因子间达显著水平,品种与处理二因子间达极显著水平,年度与处理二因子间和年度、品种、处理三因子间未达显著。

2.1.1大穗型品种产量及其构成

由表3可知,随着密度降低,两年两大穗型品种A和B方式产量均呈先增后减,C方式产量呈递增,最高产量分别为A2、B4、C5。2013年两品种A2产量较B4、C5分别高10.41%和10.22%、17.69%和14.61%,B4产量较C5高6.60%和3.98%;2014年两品种A2产量较B4、C5分别高8.06%和8.22%、15.12%和13.67%,B4产量较C5高6.53%和5.04%。同一密度下,两年两品种A1产量显著高于B3、C5,2013年增产幅度分别为10.52%和9.28%、12.10%和9.74%,2014年增产幅度为9.97%和8.46%、10.47%和9.53%,而B3产量略高于C5,但差异不显著。对2种行距毯苗机插而言,同一株距下,除2013年甬优8号株距16 cm外,大穗型品种B方式产量均高于C方式,增产幅度0.10%~9.07%,平均增产4.30%。

表2产量在年度间、品种间、处理间的方差分析

Table 2. Analysis of variance (F-value) of yield among years, cultivars and treatments(n=468).

变异来源Source自由度df平方和Sumofsquares均方MeansquareF值Fvalue年度Year(Y)119.5819.5857.14**品种Cultivar(C)5260.2552.05159.01**处理Treatment(T)1269.115.76190.47**年度×品种Y×C51.640.3321.83*年度×处理Y×T120.360.032.02ns品种×处理C×T6058.920.9865.49**年度×品种×处理Y×C×T600.900.020.42ns

*,**分别表示在5%和1%水平上差异显著,ns表示差异不显著。下同。

*,**Significantly different at 0.05 and 0.01 probability levels, respectively. ns, No signifcant difference. The same as in tables below.

对群体颖花量分析可知,随着密度降低,A和B方式群体颖花量呈先增后减,C方式呈递增,两品种群体颖花量最大值分别为A2、B4、C5,这与产量变化规律一致。再对产量构成因素进行分析,随着密度降低,3种机插方式穗数均呈递减趋势,每穗粒数呈递增趋势,结实率和千粒重无明显变化趋势。相关分析和通径分析表明(表4),大穗型品种产量与穗数呈极显著负相关,与每穗粒数和群体颖花量呈极显著正相关,且PX2-X3>PX1-X3。同一密度下,3种机插方式穗数、结实率和千粒重相当,而每穗粒数A1显著高于B3和C5。就2种行距毯苗机插而言,同一株距下,B方式穗数低于C方式,而每穗粒数呈相反趋势,结实率和千粒重互有高低。就机插方式平均值而言,与B和C方式相比,A方式穗数分别低6.26%和13.16%,每穗粒数分别高18.22%和32.56%,群体颖花量分别高11.28%和15.37%;与C方式相比,B方式穗数低7.36%,每穗粒数高12.13%,群体颖花量高3.67%;而结实率和千粒重表现为A>B>C。

因此,钵苗机插采用大穗型品种较毯苗机插利于充分发挥大穗优势而高产,而毯苗机插水稻宜采用行距30 cm机插,利于大穗型品种增产。

2.1.2中穗型品种产量及其构成

由表5可知,随着密度降低,两年两中穗型品种A方式产量呈递减趋势,B和C方式产量均呈先增后减。两年武运粳24号和宁粳3号最高产量分别为A1、B3、C4,2013年A1较B3、C4分别高8.35%和6.97%、5.74%和5.01%,而B3较C4低2.45%和1.90%;2014年A1较B3、C4处理分别高7.42%和7.66%、5.75%和5.04%,B3较C4处理低1.55%和2.43%。同一密度下,两年两品种A1产量显著高于B3、C5,2013年增产幅度为8.35%和6.97%、9.61%和7.83%;2014年增产幅度为7.42%和7.66%、8.83%和7.86%,而B3略高于C5。对2种行距毯苗机插而言,在株距为10 cm、11.7 cm、13.3 cm条件下,B方式产量高于C方式,增产幅度为2.48%~8.24%,而在株距为14.8 cm、16 cm条件下,B方式产量低于C方式,减产幅度为4.15%~6.63%。

对群体颖花量分析可知,随着密度降低,A方式群体颖花量呈递减趋势,B和C方式均呈先增后减趋势,两品种群体颖花量最大值为A1、B3、C4,且A1显著高于B3和C4,与产量变化规律一致。对产量构成进一步分析,随着密度降低,3种机插方式穗数均呈递减趋势,每穗粒数均呈递增趋势,结实率和千粒重变化不一。相关分析和通径分析结果表明(表4),中穗型品种产量与穗数呈显著负相关,与每穗粒数呈极显著正相关,且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗数、结实率、千粒重相当,A1每穗粒数显著高于B3和C5。就2种行距毯苗机插而言,同一株距下,B方式穗数低于C方式,而每穗粒数呈相反趋势,结实率和千粒重互有高低。就平均值而言,与B和C方式相比,A方式穗数减少7.59%和14.21%,每穗粒数增加16.58%和26.22%,群体颖花量高8.22%和8.26%;与C方式相比,B方式穗数减少7.17%,每穗粒数增加8.27%,群体颖花量相当;结实率和千粒重表现为A>B>C。

因此,对中穗型品种而言,水稻钵苗机插较毯苗机插利于扩大穗型而增产,而行距30 cm与行距25 cm毯苗机插产量相当,但综合考虑到行距30 cm毯苗机插利于提高结实率和千粒重,故中穗型品种宜采用行距30 cm机插。

2.1.3小穗型品种产量及其构成

由表6可知,随着密度降低,两年两小穗型品种A和B方式产量呈递减,C方式呈先增后减趋势,两年两品种最高产量分别为A1、B1、C2,两年A1、B1和C2产量相当。同一密度下,两年两品种A1产量显著高于B3、C5,2013年增产幅度为6.03%和5.47%、5.72%和5.03%,2014年增产幅度为5.49%和6.25%、8.58%和6.71%,而B3与C5产量相当,差异不显著。对2种行距毯苗机插而言,除株距为10 cm外,行距25 cm毯苗机插水稻产量高于行距30 cm毯苗机插,增产幅度为2.11%~8.61%,主要是株距10 cm条件下,行距25 cm毯苗机插群体数量过大,后期发生倒伏,较行距30 cm毯苗机插减产8.37%~12.18%。

对群体颖花量分析可知,随着密度降低,A和B方式均呈递减趋势,C方式呈先增后减趋势,两品种群体颖花量最大值分别为A1、B1、C2,与产量变化规律一致。再对产量构成分析可知,随着密度降低,3种机插方式穗数均呈递减趋势,每穗粒数呈相反趋势,结实率和千粒重处理间相当,差异不显著。相关分析和通径分析表明(表4),小穗型品种产量与穗数呈正相关,与每穗粒数呈负相关,与群体颖花量呈极显著正相关,且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗数、结实率、千粒重相当,A1每穗粒数显著高于B3和C5,而B3与C5每穗粒数相当。就2种行距毯苗机插而言,同一株距下,B方式穗数低于C方式,而每穗粒数呈相反趋势,结实率和千粒重互有高低。就机插方式平均值而言,与B和C方式相比,A方式穗数减少9.54%和17.62%,每穗粒数增加9.95%和18.59%,群体颖花量减少0.21%和2.07%;与C方式相比,B方式穗数减少8.93%,每穗粒数增加7.86%,群体颖花量减少1.87%,结实率和千粒重表现为A>B>C。

表3机插方式和密度对大穗型品种水稻产量构成的影响

Table 3. Yield and its components of large panicle-typed rice under different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment单位面积穗数Paniclenumber/(×104hm-2)每穗粒数Spikeletnumberperpanicle群体颖花量Totalspikeletnumber/(×104hm-2)结实率Seed-settingrate/%千粒重1000-grainweight/g理论产量Theoreticalyield/(t·hm-2)2013年实产Harvestedyieldin2013/(t·hm-2)2014年实产Harvestedyieldin2014/(t·hm-2)甬优2640Yongyou2640A1236.91d242.89cd57541.86b92.77a25.23a13.47b13.10b12.35abA2222.60ef269.73b60040.62a92.39a25.08a13.91a13.75a12.87aA3210.50g282.55a59475.82ab91.89a24.80a13.55ab13.25ab12.29bB1254.10bc196.52hi49935.73fg91.06a24.75a11.25fg10.97ef10.35efB2246.30cd208.00fg51230.40e91.37a24.84a11.63ef11.27e10.42efB3239.40d221.40e53002.05cde91.19a25.14a12.15d11.85d11.23dB4228.75e239.36d54754.43c91.49a25.28a12.66c12.45c11.91cB5214.13f251.18c53784.31cd90.53a25.13a12.23cd11.93d11.30cdC1270.15a180.29i48704.19g89.02a24.75a10.73h10.60f10.00fC2262.68ab188.43i49496.42fg89.73a24.88a11.05gh10.82f10.25fC3250.22bc202.13gh50574.71ef90.01a24.98a11.37fg11.15ef10.62efC4243.30cd212.89ef51795.87e89.95a25.00a11.65ef11.45de10.92deC5237.50d220.90e52463.75cde90.93a24.93a11.89de11.68d11.18d甬优8号Yongyou8A1263.10e198.55c52239.00b86.10a29.01a13.05b12.85b12.18abA2248.60f218.25b54257.50a86.19a29.05a13.59a13.42a12.64aA3225.94g232.31a52487.02b86.02a28.95a13.07b12.81b12.00bcB1293.70bc156.86gh46068.94ef84.99a28.30a11.08gh10.70fg10.12gB2279.20de168.60ef47073.12de85.62a28.45a11.47efg11.14ef10.46fgB3267.62e181.82d48658.67cd85.54a29.05a12.09cd11.76cd11.23deB4250.80f200.01c50162.51c85.39a28.97a12.41c12.18c11.68cdB5228.85g212.42b48611.02cd85.31a28.83a11.95cde11.60de11.16deC1310.06a144.83i44905.63f84.62a28.05a10.66h10.51g10.11gC2296.60b154.22h45742.47f84.78a28.08a10.89h10.68fg10.23fgC3283.70cd162.11fg45990.92ef84.92a29.04a11.34fg11.10ef10.61efC4278.70de171.10ef47685.57de84.85a28.83a11.66ef11.43de10.75efC5268.80e179.00de48115.20d85.38a28.93a11.89de11.71cd11.12de均值MeanA234.61240.7156006.9789.2327.0213.4413.2012.39B250.28203.6250328.1288.2526.8711.8911.5810.99C270.17181.5948547.4787.4226.7511.3111.1110.58

小写字母表示在同品种各处理间在0.05水平上差异显著。采用PLSD显著性测验。下同。

Values followed by different lowercase letters are significantly different at 0.05 level byPLSDsignificant test. The same as below.

表4产量与其构成因素间的相关系数及直接通径系数(n=78)

Table 4. Correlation coefficient and path coefficient between yield and its components(n=78).

品种类型与产量构成因素Cultivartypeandfactor相关系数CorrelationcoefficientbetweenyieldcomponentsX2X3X4X5产量(Y)对Y效应EffectforY(Pi-Y)对X3效应EffectforX3(Pi-X3)大穗型Largepanicletype 单位面积穗数Paniclenumber(X1)-0.955**-0.847**-0.682**0.486*-0.686**0.768 每穗粒数Spikeletnumberperpanicle(X2)0.956**0.735**-0.519**0.792**1.690 群体颖花量Totalspikeletnumber(X3)0.755**-0.519**0.854**1.098 结实率Seed-settingrate(X4)-0.932**0.3270.180 千粒重1000-grainweight(X5)-0.0060.732中穗型Mediumpanicletype 单位面积穗数Paniclenumber(X1)-0.953**-0.572**-0.049-0.468*-0.540*1.897 每穗粒数Spikeletnumberperpanicle(X2)0.784**0.1290.552**0.743**2.591 群体颖花量Totalspikeletnumber(X3)0.3710.650**0.983**0.857 结实率Seed-settingrate(X4)0.433*0.442*0.054 千粒重1000-grainweight(X5)0.744**0.163小穗型Smallpanicletype 单位面积穗数Paniclenumber(X1)-0.975**0.633**-0.393*-0.446*0.3503.766 每穗粒数Spikeletnumberperpanicle(X2)-0.461*0.466*0.534**-0.1673.212 群体颖花量Totalspikeletnumber(X3)0.1280.1260.903**0.847 结实率Seed-settingrate(X4)0.715**0.480*0.188 千粒重1000-grainweight(X5)0.498**0.257

因此,对小穗型品种而言,水稻钵苗机插较毯苗机插增产潜力相对较小,采用行距25 cm毯苗机插,提高栽插密度,显著增加穗数,利于稳产高产。

2.2穗部构成特征

由表7、表8和表9可知,随着密度降低,不同机插方式下3种穗型水稻品种穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数均呈增加趋势,一、二次枝梗数比值和一、二次枝梗粒数比值呈减少趋势,一次枝梗结实率和二次枝梗结实率无明显趋势。同一机插密度条件下,3种穗型水稻品种穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数表现为A1>B3、C5,一、二次枝梗数比值和一、二次枝梗粒数比值表现为A1C,一、二次枝梗数比值和一、二次枝梗粒数比值呈相反趋势。就平均值而言,3种穗型水稻品种穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数、二次枝梗粒数、一次枝梗结束率和二次枝梗结实率表现为A>B>C,一、二次枝梗数比值和一、二次枝梗粒数比值表现为A

3 讨论

3.1不同机插方式和密度下水稻产量差异

关于钵苗机插与毯苗机插对比研究,邴延忠等[29]认为,钵苗机插水稻比毯苗机插约增产5%。张洪程等[30]认为钵苗机插水稻较毯苗机插增产6.0%~12.6%,产量形成的主要特征是“穗大粒多”。本研究结果表明,同一密度下,不同穗型水稻品种A1产量显著高于B3和C5,B3与C5产量相当;与B3和C5相比,A1大穗型品种增产9.27%~10.55%和9.34%~12.16%,中穗型品种增产6.99%~8.35%和7.78%~9.63%,小穗型品种增产5.50%~5.99%和5.05%~5.77%。说明钵苗机插水稻较毯苗机插具有明显的增产优势,且配套应用大穗型品种增产潜力更大。

表5机插方式和密度对中穗型品种水稻产量及其构成的影响

Table 5. Yield and its components of medium panicle-typed rice under different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment单位面积穗数Paniclenumber/(×104hm-2)每穗粒数Spikeletsperpanicle群体颖花量Totalspikelets/(×104hm-2)结实率Seedsettingrate/%千粒重1000-grainweight/g理论产量Theoreticalyield/(t·hm-2)2013年实产Harvestyieldof2013/(t·hm-2)2014年实产Harvestyieldof2014/(t·hm-2)武运粳24号Wuyunjing24A1345.97f138.08bc47772.69a94.41a27.38a12.35a12.07a11.58aA2327.81g144.27ab47293.15a94.62a27.18a12.16a11.72ab11.01abA3297.87h150.40a44800.40b93.73a27.22a11.43b11.10bc10.41cB1384.06bc109.33g41990.56cd94.59a27.13a10.78de10.53de10.24cdB2369.33cd118.85ef43892.86bc94.31a27.25a11.28bc11.07bc10.59bcB3354.70def125.07d44362.33b94.80a27.28a11.47b11.14bc10.78bcB4329.25fg131.31c43234.64bc94.33a26.95a10.99cd10.80cd10.15cdB5307.35h137.00bc42106.95cd93.94a27.03a10.69de10.43de9.99dC1405.37a100.27h40647.53d94.28a26.95a10.33e10.20e9.72dC2389.88ab107.45g41894.38cd94.37a26.93a10.64de10.39de9.87dC3371.50cd115.83f43032.08bc94.14a27.04a10.96cd10.87cd10.51bcC4364.20de123.14de44848.63b94.25a27.25a11.52b11.42b10.95bC5350.15ef126.37d44247.29b94.36a27.15a11.34bc11.01bc10.64bc宁粳3号Ningjing3A1358.22de130.44bc46724.67a94.27a27.02a11.90a11.63a11.25aA2335.13f135.41ab45380.88ab95.04a26.95a11.62ab11.27ab10.74abA3316.31g138.25a43729.37bc94.15a26.86a11.06cd10.81cde10.18bcB1401.04bc100.14gh40160.15ef93.81a26.93a10.14g9.91fg9.34deB2389.50c108.39f42218.80cd95.03a27.18a10.90cdef10.65cde10.12bcB3364.56d118.40de43163.31bc94.67a27.17a11.10cd10.87cd10.45bcB4343.35ef122.06d41908.90cde94.47a27.09a10.72def10.54de10.00cB5330.18fg125.82cd41544.17def94.13a27.08a10.59ef10.34e9.85cdC1420.30a93.83i39438.15f93.39a26.48a9.75g9.48g9.00eC2408.75ab98.26h40163.78ef94.31a26.62a10.08g9.87fg9.35deC3395.50bc104.64fg41386.25def94.29a26.83a10.47fg10.28ef9.87cdC4383.10c115.47e44235.28b94.43a27.00a11.28bc11.08bc10.71abC5360.55de119.73de43169.85bc94.25a27.08a11.02cde10.79cde10.43bc均值MeanA330.22139.4745950.1994.3727.1011.7511.4310.86B357.44119.8442539.1194.4427.1210.8710.6310.15C384.93110.3042233.4894.3626.9610.7510.5410.11

关于钵苗机插水稻高产适宜栽插密度,朱聪聪等[31]就钵苗机插密度对不同类型水稻品种产量的影响进行研究,认为钵苗机插常规粳稻品种产量以高密度最高,杂交籼稻和杂交粳稻以中密度产量最高。本研究也发现钵苗机插水稻高产适宜栽插密度因品种穗型差异而不同,随着密度降低,大穗型品种产量先增后减,中、小穗型水稻品种产量呈递减趋势。说明钵苗机插应用大穗型品种宜中等密度栽插,而中、小穗型品种宜高密度栽插。由于钵苗机插水稻固定行距33 cm,最小株距为12 cm,对中、小穗型品种而言钵苗机插密度偏小。若能改进机具,适当缩小钵苗机插行距和株距,提高栽插密度,利于中、小穗型品种发挥产量潜力。而对于毯苗机插水稻栽插规格研究,叶厚专等[8]就南方双季稻地区不同行距对机插稻产量的影响进行研究,发现在相同株距条件下,行距23.3 cm和26.7 cm机插产量均高于行距30 cm机插,早稻产量分别高出2.32%~4.24%和4.34%~5.98%,晚稻产量分别高出达2.00%~3.19%和3.90%~4.25%。刘强等[15]研究淮北稻区不同行距机插秧对产量的影响,认为中熟中粳水稻主要靠足穗来夺取高产,而行距过大不利于协调穗粒结构。

表6机插方式和密度对小穗型品种水稻产量及其构成的影响

Table 6. Yield and its components of small panicle typed rice with different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment单位面积穗数Paniclenumber/(×104hm-2)每穗粒数Spikeletnumberperpanicle群体颖花量Totalspikeletnumber/(×104hm-2)结实率Seed-settingrate/%千粒重1000-grainweight/g理论产量Theoreticalyield/(t·hm-2)2013年实产Harvestyieldof2013/(t·hm-2)2014年实产Harvestyieldof2014/(t·hm-2)淮稻5号Huaidao5A1373.22e106.12b39605.58a96.14a27.27a10.38a10.08a10.00aA2335.10fg112.73a37776.94bc96.07a27.15a9.85bc9.61ab9.42bcA3317.31h114.79a36424.13cd96.01a27.13a9.49cd9.26cd9.05cB1419.55ab92.89de38972.97ab96.11a26.84a10.05ab9.80ab9.85abB2401.88cd95.93cd38553.21ab96.05a26.75a9.91ab9.63bc9.57abB3381.33e98.85c37692.86bc96.16a26.70a9.68bc9.51bc9.48bcB4345.30f105.63b36471.92cd96.09a26.75a9.37cd9.12d9.05cB5326.40gh109.17ab35632.00d96.01a27.00a9.24d8.91d8.48dC1451.40a83.42f37653.87bc93.90a26.20a9.26d8.98d8.65cdC2434.10a91.84e39867.08a95.98a26.80a10.25a10.06a10.05aC3410.70bc95.50de39221.85a95.97a26.75a10.07ab9.83ab9.68abC4392.10de96.69cd37911.17ab96.33a27.28a9.96ab9.70ab9.58abC5381.05e99.88c38060.42ab96.19a26.58a9.73bc9.53bc9.21bc淮稻10号Huaidao10A1360.69fg107.79b38877.23ab96.41a27.19a10.19a9.98a9.86aA2330.33h110.47ab36490.45c96.59a27.19a9.58cd9.31cd9.21bcA3312.90i115.18a36041.14c96.87a27.06a9.45de9.18de9.08cdB1417.75bc93.55f39078.61a96.00a26.95a10.11ab9.84ab9.78aB2392.75d98.15de38549.92ab96.57a26.98a10.04ab9.72ab9.65abB3375.78ef100.57d37793.21bc96.07a26.90a9.77cd9.46bcd9.28bcB4347.70g105.29bc36610.76c95.18a27.03a9.42de9.08de9.00cdB5331.01h111.17ab36797.56c95.07a26.23a9.17e8.85e8.78dC1447.98a81.55g36530.33c95.06a26.18a9.09e8.76e8.61dC2426.15b92.67f39489.90a96.06a26.93a10.21a10.09a9.92aC3404.50cd95.23ef38520.85ab95.79a26.88a9.92abc9.78ab9.68abC4389.55de97.93de38146.68abc95.91a26.98a9.87bc9.68bc9.52abC5368.70f102.81cd37906.97bc96.02a26.95a9.81bcd9.50bcd9.24bc均值MeanA338.26111.1837535.9196.3527.169.829.579.44B373.94101.1237615.3095.9326.819.689.399.29C410.6293.7538330.9195.7226.759.829.599.41

本研究结果表明,随着密度降低,大穗型品种行距30 cm毯苗机插产量呈先增后减趋势,以B4产量最高,行距25 cm毯苗机插呈递增趋势,以C5产量最高;中穗型品种行距30 cm和行距25 cm毯苗机插产量均呈先增后减趋势,分别以B3和C4产量最高;小穗型品种行距30 cm毯苗机插呈递减趋势,以B1产量最高,行距25 cm毯苗机插呈先增后减趋势,以C2产量最高。说明毯苗机插水稻对不同穗型品种配置适宜栽插密度不同,大穗型品种宜低密度,中穗型品种宜中等密度,小穗型品种宜高密度,利于提高毯苗机插水稻产量。本研究结果还表明,大穗型品种行距30 cm毯苗机插平均产量较行距25 cm毯苗机插增加4.23%,中穗型品种行距30 cm毯苗机插平均产量较行距25 cm毯苗机插增加1.04%,而小穗型品种行距30 cm毯苗机插平均产量较行距25 cm毯苗机插减少2.09%。说明毯苗机插水稻配套大穗型品种宜采用行距30 cm机插,适当降低密度而利于高产;中穗型品种宜采用行距30cm机插,配置中等密度而获得高产;小穗型品种宜采用行距25 cm机插,适当增加密度而利于增产。

表7不同机插方式和密度下大穗型水稻品种穗部性状

Table 7. Panicle traits of large panicle-typed rice under different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment穗Panicle穗长PL/cm着粒密度GD/(grain·cm-1)单穗质量GWP/g一、二次枝梗数比值RNB一、二次枝梗粒数比值RNG一次枝梗Primaryrachisbranch枝梗数NB粒数NG结实率SR/%二次枝梗Secondaryrachisbranch枝梗数NB粒数NG结实率SR/%甬优2640Yongyou2640 A122.84ab10.63bc5.53ab0.30cd0.57cd15.11b87.78bc94.81a51.11b155.11b89.34a A223.24a11.56ab5.79a0.28d0.49d15.45b87.91bc95.04a55.00ab180.82a88.81a A323.46a12.08a5.82a0.28d0.53d17.18a98.36a95.75a60.82a185.18a88.46a B121.02cd9.41cd4.81d0.37ab0.69ab14.03cd80.71cd95.22a37.57de117.14de88.05a B221.08cd9.92c4.88d0.36ab0.65ab14.18cd82.67c95.97a39.78de126.33cd86.63a B322.44b9.82c5.12bcd0.33bc0.64b14.60bc85.60bc95.33a44.40cd134.80c86.35a B422.86ab10.47bc5.36abc0.30cd0.58c14.45bc87.45bc95.26a48.18bc151.91b88.87a B523.07ab10.93ab5.57ab0.30cd0.57cd15.91ab91.27ab94.02a53.64ab160.91b85.88a C120.31d8.87d4.75d0.40a0.70a13.21d74.29d93.87a32.86e106.00e86.24a C221.03cd8.96d4.92d0.38ab0.69a13.53d76.71d93.01a35.43e111.71de86.57a C321.89bc9.23cd5.03cd0.36ab0.66ab13.86cd80.25cd93.69a38.00de121.88cd88.00a C421.90bc9.72cd5.17bcd0.34bc0.63b14.06cd82.00c93.93a41.67de130.89c87.88a C522.23b9.87c5.20bcd0.33bc0.64b14.67bc85.80bc92.97a44.32cd133.68c87.72a甬优8号Yongyou8 A118.91c10.45abc5.10bc0.52d1.14cd17.45ab105.09bc90.45a33.55b92.45b81.12a A219.09c11.27a5.32ab0.49de1.08de17.92a112.00ab90.25a36.83ab103.25ab80.55a A321.64a10.83ab5.67a0.45e1.03e18.18a118.62a90.99a40.38a115.69a82.18a B117.07d9.19def4.77c0.64a1.28a15.00cd88.00ef90.25a23.29cd68.86de78.72a B217.85d9.45cde4.90bc0.61ab1.25ab15.20cd93.60de90.07a24.80cd75.00cd80.37a B318.15cd10.02bcd5.01bc0.55cd1.25ab16.73bc101.18c89.31a30.36bc80.64c80.61a B419.05c10.45abc5.30ab0.48e1.14cd17.16ab106.10bc90.30a35.60ab93.00b80.74a B520.37b10.43abc5.32ab0.45e1.14cd18.07a113.08ab89.70a40.17a99.33ab81.27a C117.01d8.52f4.72c0.64a1.29a14.56d81.00f88.89a22.68d63.00e78.87a C217.52d8.80ef4.78c0.63ab1.24ab15.33cd85.44ef88.16a24.33cd68.78de79.55a C318.11cd8.95ef4.89bc0.62ab1.22ab16.11bcd89.22ef88.66a26.11cd72.89cd79.97a C418.52c9.24def5.02bc0.59bc1.19bc16.45bc92.90de88.16a27.80cd78.20cd81.30a C518.48c9.69cde5.04bc0.54cd1.17bc16.50bc96.64cd88.73a30.36bc82.36c81.26a均值Mean A21.5311.145.540.390.8016.88101.6392.8846.28138.7585.08 B20.3010.015.100.440.9215.5392.9792.5437.78110.7983.75 C19.709.194.950.480.9414.8384.4391.0132.3696.9483.74

PL, Panicle length; GD, Grain density; GWP, Grain weight per panicle; RNB, Ratio of No. of primary rachis branch to No. of secondary rachis branch; RNG, Ratio of No. of grains on primary rachis branch to No. of grains on secondary rachis branch; NB, No. of rachis branches; NG, No. of grains; SR,Seed-setting rate.

3.2不同机插方式和密度下水稻产量构成因素差异

水稻产量构成因素包括单位面积穗数、每穗粒数、结实率和千粒重。水稻高产的获得关键在于提高群体颖花量。前人研究认为增加穗数或每穗粒数或两者均可提高水稻群体颖花量[32-33],穗数与每穗粒数呈负相关[34-35]。黄大山等[14]认为机插稻宁粳1号随着移栽密度增加,穗数和群体颖花量大幅度增加,结实率和千粒重有所减少。本研究结果表明,随着密度降低,不同机插方式下不同穗型品种穗数呈递减趋势,每穗粒数呈递增趋势,千粒重和结实率无明显变化规律。就群体颖花量而言,钵苗机插方式,随着密度降低,大穗型品种呈先增后减趋势,以A2最高;中、小穗型品种呈递减趋势,以A1最高。行距30 cm毯苗机插,随着密度降低,大、中穗型品种呈先增后减趋势,以B4和B3最高;小穗型品种呈递减趋势,以B1最高。行距25 cm毯苗机插,随着密度降低,大穗型品种呈递增趋势,以C5最高;中、小穗型品种呈先增后减趋势,以C4和C2最高。说明钵苗机插应用大穗型品种,适当降低密度,依靠增加每穗粒数而提高群体颖花量,中、小穗型品种以配置高密度,通过增加穗数而提高群体颖花量;毯苗机插应用大穗型品种宜降低密度,通过扩大穗型而增加群体颖花量,中穗型品种则配置中等密度,协调穗粒结构而提高群体颖花量,小穗型品种则增加栽插密度,依靠显著增加穗数而提高群体颖花量。本研究结果还表明,同一密度下,不同穗型品种穗数A1、B3和C5相当,每穗粒数A1显著高于B3和C5,每穗粒数增幅表现为大穗型>中穗型>小穗型,但B3与C5每穗粒数相当。说明钵苗机插水稻较毯苗机插应用大穗型品种更利于充分发挥大穗优势,扩大穗型。

表8不同机插方式和密度下中穗型水稻品种穗部性状

Table 8. Panicle traits of medium panicle typed rice under different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment穗Panicle穗长PL/cm着粒密度GD/(grain·cm-1)单穗质量GWP/g一、二次枝梗数比值RNB一、二次枝梗粒数比值RNG一次枝梗Primaryrachisbranch枝梗数NB粒数NG结实率SR/%二次枝梗Secondaryrachisbranch枝梗数NB粒数NG结实率SR/%武运粳24Wuyunjing24 A115.49ab8.91ab3.49ab0.57de1.15de13.25ab73.92ab97.29a23.42b64.17b89.09a A215.85ab9.17ab3.51a0.54de1.05e13.93ab74.40ab97.13a25.73ab70.87ab90.31a A316.16a9.37a3.53a0.49e1.04e14.07a77.33a97.41a28.80a74.07a89.20a B113.38c8.10bc2.74b0.71ab1.52b11.75c65.42bc94.62a16.50c42.92f92.82a B214.95b7.95bc3.00ab0.62cd1.26cd12.08c66.31bc96.06a19.38bc52.54de92.09a B315.13b8.20bc3.14ab0.62cd1.24cd12.71bc68.71b96.65a20.43b55.36de88.65a B415.59ab8.42ab3.22ab0.58d1.17de12.94b70.88ab97.57a22.19b60.44cd89.56a B515.85ab8.64ab3.37ab0.51b1.05e12.33bc70.14ab97.07a24.28ab66.86abc93.08a C113.29c7.54c2.54b0.79a1.73a11.36c63.55c95.42a14.36c36.73f89.11a C214.00bc7.60c2.77b0.77a1.61ab11.75c65.73bc95.34a15.28c40.73f89.88a C314.73b7.80c2.89ab0.69bc1.35c12.25bc65.92bc97.22a17.75c48.92ef90.53a C415.05b7.92bc3.08ab0.66bc1.34c12.50bc68.29b97.05a19.00bc50.86de89.47a C515.41ab8.18bc3.13ab0.58de1.28cd13.13ab70.73ab97.29a22.80b55.33de90.96a宁粳3号Ningjing3 A115.38a8.48ab3.25a0.57c1.22e13.06ab71.56ab97.99a22.81a58.88ab90.13a A214.81ab9.08a3.29a0.56c1.19e13.18ab73.06a97.67a23.41a61.35ab91.85a A315.15a9.17a3.31a0.52c1.11e13.15ab73.05a97.91a25.42a65.89a90.89a B113.59b7.39cd2.51b0.87a1.81ab12.08b64.67c96.13a13.95b35.75d88.81a B213.96ab7.73bc2.73ab0.85ab1.64bc12.15b67.00bc97.70a14.31b40.92cd89.98a B314.79ab8.00bc2.98ab0.79b1.49d13.12ab70.87ab96.71a16.53b47.53c90.04a B413.68ab9.07a3.05ab0.77b1.47d13.12ab73.76a98.33a17.06b50.29bc90.06a B514.86ab8.53ab3.09ab0.78b1.40d13.52a73.94a98.01a17.35b52.88bc90.55a C113.43b6.91d2.42b0.89a2.04a11.53b62.33c95.19a13.00b30.50d89.84a C213.75ab7.25cd2.47b0.85ab1.88ab11.77b65.15c97.28a13.77b34.62d90.76a C314.21ab7.29cd2.56ab0.83ab1.79b11.95b66.50bc96.73a14.37b37.14d91.92a C413.74ab8.11abc2.91ab0.78b1.60c12.11b68.67bc97.09a15.60b42.80cd91.12a C514.49ab8.23ab3.00ab0.80b1.54c12.63ab72.40ab97.97a15.73b46.93c91.29a均值Mean A15.479.033.390.541.1313.4473.8997.5724.9365.8790.25 B14.588.202.980.711.4112.5869.1796.8818.2050.5590.56 C14.217.682.780.761.6212.1066.9396.6616.1742.4690.49

3.3不同机插方式和密度下水稻穗部构成特征

穗部性状与水稻高产形成关系较为密切。曾勇军等认为双季稻地区早稻高产群体穗型特征为穗长较长,一、二次枝梗数多,每穗粒数100~130粒,单穗质量2.5 g以上;晚稻表现为穗长较长,二次枝梗数多,着粒密度大,每穗粒数120~150粒,单穗质量3.0 g 左右。马均等研究认为重穗型品种理想穗部性状为单穗重4.8 g以上,每穗粒数180~240粒。本研究结果表明,随着密度降低,3种机插方式不同穗型水稻品种穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数呈增加趋势,一、二次枝梗数比值和一、二次枝梗粒数比值呈降低趋势。说明不同机插方式下水稻降低密度均利于扩大穗型,增加二次枝梗数和二次枝梗粒数,改善穗部性状。本研究结果还表明,同一机插密度下,钵苗机插水稻穗长、着粒密度、单穗质量、一次枝梗数、一次枝梗粒数、二次枝梗数和二次枝梗粒数高于毯苗机插,不同穗型品种间表现为大穗型>中穗型>小穗型。可见,钵苗机插水稻较毯苗机插利于增加穗重和优化穗部结构。

4 结论

钵苗机插配套大穗型品种适当降低密度,充分发挥大穗优势,增加每穗粒数,提高群体颖花量而高产;中、小穗型品种则应高密度栽插,增加穗数而高产。毯苗机插应用大穗型品种宜采用行距30 cm,适当增加株距,依靠扩大穗型而高产;中穗型品种宜采用行距30 cm,配置中等密度,协调穗粒结构而高产;小穗型品种则采用行距25 cm,适当减少株距,增加栽插密度,显著增加穗数而增产。同一密度下,钵苗机插产量显著高于毯苗机插,增产幅度以大穗型品种最大,中穗型品种次之,小穗型品种最小。不同机插方式大水稻降低栽插密度,利于优化不同穗型品种穗部性状;同一密度下,钵苗机插穗部性状优于毯苗机插。

表9不同机插方式和密度下小穗型水稻品种穗部性状

Table 9. Panicle traits of small panicle-typed rice under different mechanically transplanted methods and densities.

品种与处理Cultivarandtreatment穗Panicle穗长PL/cm着粒密度GD/(grain·cm-1)单穗质量GWP/g一、二次枝梗数比值RNB一、二次枝梗粒数比值RNG一次枝梗Primaryrachisbranch枝梗数NB粒数NG结实率SR/%二次枝梗Secondaryrachisbranch枝梗数NB粒数NG结实率SR/%淮稻5号Huaidao5 A115.08bc7.03ab2.75ab0.66c1.42bc11.15a62.15a98.39a16.85abc43.85ab92.92a A215.49ab7.28a2.87a0.65c1.26cd11.13a62.87a98.09a17.07ab49.87a92.81a A316.03a7.29a2.92a0.59c1.22d11.95a64.26a98.28a20.11a52.53a93.02a B113.77de6.59bc2.33b0.82a1.36bc10.05b52.31b98.32a12.31c38.38bc91.82a B214.15cd6.78bc2.40ab0.76ab1.35bc10.47ab54.60b98.41a13.80bc40.33bc92.39a B314.58bc6.78bc2.49ab0.73b1.31cd10.85ab56.00ab98.21a14.77bc42.85bc92.65a B414.78bc7.15ab2.65ab0.67c1.31cd11.15a59.88ab97.91a16.56abc45.75ab92.56a B515.18ab7.19ab2.77ab0.69bc1.27cd11.50a61.11a98.33a16.78abc48.06ab93.08a C113.11e6.36c2.28b0.81a1.57a9.71b50.33b96.21a12.05c32.08c90.11a C213.91de6.58bc2.30b0.83a1.58a10.31ab56.00ab97.29a12.46c35.54c90.96a C313.92de6.79bc2.38ab0.72bc1.50ab10.43ab56.64ab97.98a14.43bc37.86c91.53a C414.21cd6.80bc2.45ab0.72bc1.50ab10.44ab58.00ab98.49a14.53bc38.69bc91.47a C514.32cd6.98ab2.50ab0.71bc1.41b10.35ab58.35ab97.88a14.65bc41.53bc91.96a淮稻10号Huaidao10 A115.28ab7.05ab2.77ab0.60c1.19d10.93ab58.64ab97.56a18.36ab49.14ab93.58a A215.31ab7.21ab2.79ab0.60c1.19d11.08ab60.13a97.67a18.33ab50.33ab92.90a A316.14a7.29ab2.96a0.52c1.13d11.47a62.37a98.14a22.21a55.32a93.19a B114.01c6.61c2.28b0.74b1.44bc10.31bc54.55ab97.67a14.00bc38.00cd91.81a B214.11c6.96bc2.48ab0.72b1.43bc10.58b57.69ab97.60a14.69bc40.46c91.98a B314.68bc6.92bc2.52ab0.68bc1.30cd10.50b57.43ab98.88a15.33bc44.14bc92.42a B414.65bc7.25ab2.61ab0.69bc1.29cd11.08ab59.94a96.81a15.94bc46.35bc92.58a B514.96bc7.50a2.68ab0.67bc1.26cd11.65a62.06a98.18a17.39ab49.11ab92.55a C113.54c6.02d2.31b0.86a1.66a9.43c50.91b97.68a11.01c30.64d90.24a C214.08c6.54cd2.35b0.87a1.55ab10.38bc56.08ab97.70a11.92c36.08cd90.96a C313.93c6.76bc2.35b0.87a1.54ab10.42b57.08ab97.57a11.92c37.15cd91.42a C414.59bc6.68c2.43ab0.75b1.45bc10.75ab58.18ab97.83a14.38bc40.25c91.51a C515.01abc6.85bc2.60ab0.73b1.42bc11.09ab60.31a97.11a15.15bc42.50bc92.14a均值Mean A15.567.192.840.601.2411.2961.7498.0218.8250.1793.07 B14.496.962.520.721.3310.8157.5698.0315.1643.3492.38 C14.066.632.390.791.5210.3356.1997.5713.2537.2391.23

[1]张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289.

Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China.SciAgricSin, 2014, 47(7): 1273-1289. (in Chinese with English abstract)

[2]朱德峰, 陈惠哲, 徐一成. 我国水稻种植机械化的发展前景与对策. 北方水稻, 2007(5): 13-18.

Zhu D F, Chen H Z, Xu Y C. Countermeasure and perspective of mechanization of rice planting in China.NorthRice, 2007(5): 13-18. (in Chinese with English abstract)

[3]陆为农. 水稻生产机械化发展现状及展望. 农机科技推广, 2006(2): 13-16.

Lu W N. Progress and development of mechanical rice production.AgricMachTechnolExt, 2006(2): 13-16. (in Chinese with English abstract)

[4]宋建农, 庄乃生, 王立臣, 等. 21世纪我国水稻种植机械化发展方向. 中国农业大学学报, 2000, 5(2): 30-33.

Song J N, Zhuang N S, Wang L C, et al.The development tendency of Chinese rice planting mechanization in the 21st century.JChinaAgricUniv, 2000, 5(2): 30-33.

[5]朱德峰, 陈惠哲. 水稻机插秧发展与粮食安全. 中国稻米, 2009(6): 4-7.

Zhu D F, Chen H Z. The development of machine transplanted rice and food security.ChinaRice, 2009(6): 4-7. (in Chinese)

[6]高连兴, 赵秀荣. 机械化移栽方式对水稻产量及主要性状的影响. 农业工程学报, 2002, 18(5): 45-48.

Gao L X, Zhao X R. Effect of mechanized transplanting methods on rice yield and rice population growth trends.TransCSAE, 2002 18(5): 45-48. (in Chinese with English abstract)

[7]李杰, 杨洪建, 邓建平, 等. 对加快推进江苏省水稻机插秧发展的思考. 中国稻米, 2014, 20(1): 32-35.

Li J, Yang H J, Deng J P, et al.Thinking of accelerating development of machine-transplanted rice in Jiangsu Province.ChinaRice, 2014, 20(1): 32-35.

[8]叶厚专, 李艳大, 沈显华, 等. 不同机插行距对水稻产量的影响. 中国农机化, 2012(4): 59-62.

Ye H Z, Li Y D, Shen X H, et al.Effects of different machine-transplanted row spacing on rice yield.ChinAgricMech, 2012(4): 59-62. (in Chinese with English abstract)

[9]马振国, 潘九明. 水稻插秧机行距问题探索. 江苏农机化, 2012(3): 49.

Ma Z G, Pan J M. Explore on problem of row spacing of mechanical rice.JiangsuAgricMech, 2012(3): 49. (in Chinese with English abstract)

[10]沈才标, 王驾清, 孙祖高, 等. 水稻窄行插秧机的引进示范. 上海农业科技, 2012(2): 51-52.

Shen C B, Wang J Q, Sun Z G, et al.Demonstration of narrow spacing of mechanical rice.ShanghaiAgricSciTechnol, 2012(2): 51-52. (in Chinese with English abstract)

[11]陈立才, 叶厚专, 舒时富. 8寸行距插秧机的研制与应用. 2012年中国作物学会学术年会论文摘要集. 2012: 28.

Chen L C, Ye H Z, Shu S F. Research and application of mechanical transplanted rice of eight cun row spacing. Abstract of Crop Academic Conference in 2012. 2012: 28. (in Chinese)

[12]陈俊义, 杨东平, 吴国良, 等. 杂粳“常优1号”机插超高产栽培技术. 上海农业科技, 2007(3): 30-31.

Chen J Y, Yang D P, Wu G L, et al. Technology of super-high-yielding of mechanical transplanted hybrid japonica rice of changyou 1.ShanghaiAgricSciTechnol, 2007(3): 30-31. (in Chinese with English abstract)

[13]张洪程, 赵品恒, 孙英菊, 等. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39-44.

Zhang H C, Zhao P H, Sun Y J, et al. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice.TransCSAE, 2012, 28(2): 39-44. (in Chinese with English abstract)

[14]黄大山. 播期、播量和移栽密度对宁粳1号机插稻产量形成及氮素吸收利用的影响. 扬州大学, 2008.

Huang D S. Effects of Sowing Date, sowing rate and transplanting density on the yield formation and nitrogen absorption of mechanical transplanting rice Nanjing 1. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract)

[15]刘强, 杨波, 段瑞华, 等. 淮北稻区不同行距机插秧对产量影响的研究. 现代农业科技, 2010(4): 83-84.

Liu Q, Yang B, Duan R H, et al. Study on effect of yield of different row spacing mechanical rice in Huaibei region.ModAgricSciTechnol, 2010(4): 83-84. (in Chinese with English abstract)

[16]邢春秋, 付有权, 闫彬. 浅谈水稻八行与六行插秧机应用效果. 垦殖与稻作, 2006(5): 74-75.

Xing C Q, Fu Y Q, Yan B. Effect on eight and six row spacing of mechanical transplanting rice.ReclRiceCult, 2006(5): 74-75. (in Chinese with English abstract)

[17]李世峰, 刘蓉蓉, 吴九林. 不同播量与移栽密度对机插水稻产量形成的影响. 作物杂志, 2008(1):71-73.

Li S F, Liu R R, Wu J L. Effects of different sowing rates and transplanting densities on yield formation of machine-transplanted rice.Crops, 2008(1): 71-73. (in Chinese with English abstract)

[18]彭长青, 李世峰, 卞新民, 等. 机插水稻精确定量栽培调控技术研究. 上海农业学报, 2006, 22(1): 20-24.

Peng C Q, Li S F, Bian X M, et al. Study on quantitative planting practice of machine-transplanted rice.ActaAgricShanghai, 2006, 22(1): 20-24. (in Chinese with English abstract)

[19]吴雪源, 王依明. 不同机插密度对水稻产量的影响试验简报. 上海农业科技, 2012(3): 47-50.

Wu X Y, Wang Y M. Bulletin effect on yield of different density of mechanical rice.ShanghaiAgricSciTechnol, 2012(3): 47-50. (in Chinese with English abstract)

[20]Akita K, Tanaka N. Effects of planting density and planting patterns of young seedlings transplanting on the growth and yield of rice plants.JpnJCropSci, 1992, 61: 80-86.

[21]钱银飞, 张洪程, 吴文革, 等. 机插穴苗数对不同穗型粳稻品种产量及品质的影响. 作物学报, 2009, 35(9): 1689-1707.

Qian Y F, Zhang H C, Wu W G, et al. Effects of seedlings number per hill on grain yieId and quality in different panicle types of mechanical transplanted japonica rice.ActaAgronSin, 2009, 35(9): 1689-1707. (in Chinese with English abstract)

[22]李宗春, 王恒雨, 许成军, 等. 淮北地区机插稻存在问题及栽培对策. 北方水稻, 2008(4): 54-55.

Li Z C, Wang H Y, Xu C J, et al.The problem and cultivation countermeasure of mechanical transplanting rice in Huaibei region.NorthRice, 2008, (4): 54-55 (in Chinese)

[23]张洪程, 李杰, 戴其根, 等. 机插稻“标秧、精插、稳发、早搁、优中、强后”高产栽培精确定量关键技术. 中国稻米, 2010, 16(5): 1-6.

Zhang H C, Li J, Dai Q G, et al.The key techniques of "standardizing seedlings, precise transplanting, steady growing, earlier drainage, optimizing middle-stage, strengthening later-stage" model for precise quantitative high-yielding cultivation of mechanical transplanting rice.ChinaRice, 2010, 16(5): 1-6. (in Chinese)

[24]成永芳. 日本RX-6型水稻钵苗移栽机引进试验简报. 农机与食品机械, 1999(3): 27-31.

Cheng Y F. Bulletin trial of pot seedling of mechanical transplanted rice (RX-6) of Japan.AgricMachFoodMach, 1999, 3: 27-31. (in Chinese)

[25]王立臣, 王苹, 李益民, 等. 2ZPY-H530型水稻钵苗行栽机试验研究. 中国农业大学学报, 2002, 7(4): 21-24.

Wang L C, Wang P, Li Y M, Song J N. Research on trial of pot seedling of mechanical transplanted rice (2ZPY-H530).JChinaAgricUniv, 2002, 7(4): 21-24. (in Chinese)

[26]陈恒高, 张义峰, 董晓威. 新型水稻栽植机的研究. 黑龙江八一农垦大学学报, 2005, 17(4): 39-41.

Chen H G, Zhang Y F, Dong X W. Study on a new type rice transplanting machine.JHeilongjiangAugustFirstLandReclUniv, 2005, 17(4): 39-41. (in Chinese)

[27]张洪程. 钵苗机插水稻生产特点及其利用的核心技术. 农机市场, 2012(8): 19-21.

Zhang H C. Characteristic of production of pot seedling of mechanical transplanted rice and its using key technology.AgricMachMark, 2012, 8: 19-21. (in Chinese)

[28]李刚华, 于林惠, 侯朋福, 等. 机插水稻适宜基本苗定量参数的获取与验证. 农业工程学报, 2012, 28(8): 98-104.

Li G H, Yu L H, Hou P F, et al.Calculation and verification of quantitative parameters of optimal planting density of machine-transplant rice.TransCSAE, 2012, 28(8): 98-104. (in Chinese)

[29]邴延忠, 陈宗凯. 水稻钵苗移栽机械化技术研发与应用. 农机科技推广, 2011(4): 52.

Bing Y Z, Chen Z K. Research and application on the technology of pot seedling of mechanical transplanted rice.AgricMachTechnolExt, 2011(4): 52. (in Chinese)

[30]张洪程, 朱聪聪, 霍中洋, 等. 钵苗机插水稻产量形成优势及主要生理生态特点. 农业工程学报, 2013, 29(21): 50-59.

Zhang H C, Zhu C C, Huo Z Y, et al. Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting.TransCSAE, 2013, 29(21): 50-59. (in Chinese with English abstract)

[31]朱聪聪, 张洪程, 郭保卫, 等. 钵苗机插密度对不同类型水稻产量及光合物质生产特性的影响. 作物学报, 2014, 40(1): 122-133.

Zhu C C, Zhang H C, Guo B W, et al.Effect of planting density on yield and photosynthate production characteristics in different types of rice with bowl mechanical-transplanting method.ActaAgronSin, 2014, 40: 122-133 (in Chinese with English abstract)

[32]Zhang H, Chen T T, Liu Li J, et al. Performance in grain yield and physiological traits of rice in the Yangtze River Basin of China during the last 60 yr.JIntegAgric, 2013, 12(1): 57-66.

[33]Huang M, Zou Y B, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice.AgricSciChina, 2011, 10(10): 1537-1544.

[34]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches.JExpBot, 1991, 42: 871-879.

[35]高良艳, 周鸿飞. 水稻产量构成因素与产量的分析. 辽宁农业科学, 2007(1): 26-28.

Gao L Y, Zhou H F. Relationship between yield component factors and yield in rice.LiaoningAgricSci, 2007(1): 26-28.

[36]曾勇军, 石庆华, 潘晓华, 等. 长江中下游双季稻高产株型特征初步研究. 作物学报, 2009, 35: 546-551.

Zeng Y J, Shi Q H, Pan X H,et al. Preliminary study on the plant type characteristics of double cropping rice in middle and lower reaches of Changjiang River.ActaAgronSin, 2009, 35: 546-551. (in Chinese with English abstract)

[37]马均, 马文波, 明东风, 等. 重穗型水稻株型特征研究. 中国农业科学, 2006, 39: 679-685.

Ma J, Ma W B, Ming D F,et al.Studies on the characteristics of rice plant with heavy panicle.SciAgricSin, 2006, 39: 679-685 (in Chinese with English abstract)

Effect of Different Mechanical Transplantation Methods and Density on Yield and Its Components of Different Panicle-typed Rice

HU Ya-jie, QIAN Hai-jun, CAO Wei-wei, XING Zhi-peng, ZHANG Hong-cheng*, DAI Qi-gen, HUO Zhong-yang, XU Ke, WEI Hai-yan, GUO Bao-wei

(Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China;*Corresponding author, E-mail: hczhang@yzu.edu.cn)

In order to apply suitable panicle-typed cultivar and plant density under different mechanical transplantation methods, and clarify high-yield formation characteristics of different panicle-typed rice, an experiment was conducted in Xinghua test point of Yangzhou University during 2013 and 2014. Three panicle-typed rice including large panicle type (LPT, Yongyou 2640 and Yongyou 8), medium panicle type (MPT, Wuyunjing 24 and Ningjing 3) and small panicle type (SPT, Huaidao 5 and Huaidao 10) were field-grown. We compared three mechanically transplanted methods including mechanically transplanted pot seedling (A), mechanically transplanted carpeted seedling in row spacing of 30 cm (B), mechanically transplanted carpeted seedling in row spacing of 25 cm (C) at different plant densities, namely plant spacing of 12 cm, 14 cm and 16 cm (marked as 1, 2, 3) in A and plant spacing of 10 cm, 11.7 cm, 13.3 cm, 14.8 cm, 16 cm (marked as 1, 2, 3, 4, 5) in B and C. Yield and its formation, panicle traits were investigated. The main results were as follows: 1) for mechanically transplanted pot seedling, with declining plant density, yield of LPT increased and then reduced, peaking in A2 treatment; yield of MPT and SPT reduced, peaking in A1 treatment. For mechanically transplanted carpet seedling, with reducing plant density, yield of LPT increased and then reduced in B, peaking in B4 treatment, yield of LPT increased in C, peaking in C5 treatment; yield of MPT increased and then reduced in B and C, peaking in B3 and C4 treatment, respectively; yield of SPT reduced in B, peaking in B1 treatment, yield of SPT increased and then reduced, peaking in C2 treatment. In the same plant density, yield of mechanically transplanted pot seedling was significantly higher than mechanically transplanted carpet seedling, the range of increased yield followed a tendency of LPT>MPT>SPT, with no significant difference in B and C. For B and C, in the same plant spacing, yield of LPT was higher in B than C; yield of MPT was higher in B than C in plant spacing of 10 cm, 11.7 cm, 13.3 cm, but it was opposite at plant spacing of 14.8 cm, 16 cm; yield of SPT was higher in C than B in plant spacing of 11.7 cm, 13.3 cm, 14.8 cm, 16 cm. 2) With plant density reduced, panicle number reduced and spikelet number per panicle increased in different panicle-typed rice under different mechanically transplanted methods. At the same plant density, there was no significant difference in panicle, grain filled percentage and 1000-grain weight in different mechanically transplanted methods, but spikelet number per panicle was significantly higher in A than B or C, following a trend of LPT>MPT>SPT. For B and C, number of panicle was lower in B than in C, but it was opposite in spikelet number per panicle. 3) Panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches were increased with plant density reduced, it was opposite in the ratio of No. of primary rachis branch to No. of secondary rachis branch and ratio of No. of grains of primary rachis branch to No. of grains of secondary rachis branch. In the same plant density, panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches in A than in B or C. Therefore, mechanically transplanted pot seedling of LPT could reduce plant density, it was beneficial to enlarge panicle type and increase total spikelet number and yield; for MPT and SPT, higher density should be adopted to increase panicle and spikelet number per panicle for high yield. For mechanically transplanted carpet seedling of LPT, B method and wider plant spacing should be applied to expand panicle type and acquire higher yield; for MPT, B method and medium density should be applied to coordinate panicle and spikelet number per panicle to increase total spikelet number; for SPT, C method and narrow plant spacing should be applied to increase number of panicle to achieve high yield.

mechanically transplanted pot seedling; mechanically transplanted carpet seedling; plant-row spacing; yield; yield components; panicle trait

2016-01-28; 修改稿收到日期: 2016-03-16。

国家科技支撑计划重大项目(2011BAD16B03);江苏省农业科技自主创新基金资助项目(CX[2]1003.9);江苏省科技支撑计划资助项目(BE2012301);江苏省高校优势学科建设工程资助项目;江苏省研究生科研创新计划(KYLX_1353)资助项目。

S511.045; S511.048

A

1001-7216(2016)05-0493-14

胡雅杰, 钱海军, 曹伟伟,等. 机插方式和密度对不同穗型水稻品种产量及其构成的影响. 中国水稻科学, 2016, 30(5): 493-506.

猜你喜欢

枝梗粒数穗数
抽吸参数对电加热卷烟气溶胶粒数和粒径的影响
2020年度夏玉米行距密度试验研究报告
播期对机插杂交籼稻不同茎蘖部位稻穗枝梗数和颖花数的影响
粳稻盐粳188 航天诱变后代穗部性状多样性及相关性分析
小麦穗顶部和基部小穗结实粒数的全基因组关联分析
杂交晚粳稻通优粳1号产量及构成因子分析
小麦黄淮冬麦区北片国家区试品种产量构成因素变异分析
高产小麦构成要素的解析与掌握
甘蓝型高角粒油菜不同部位角粒数差异研究
不同穗型粳稻品种(系)稻曲病粒在穗内粒位上的分布