对影响香蕉叶斑病菌喙突脐蠕孢生长和产孢碳、氮源的统计学分析
2015-06-05杜瑞卿林善海黄思良张征田覃丽萍黎起秦
杜瑞卿,林善海,黄思良,张征田,覃丽萍,黎起秦
(1.南阳师范学院生命科学与技术学院,河南南阳473061;2.广西农业科学院甘蔗研究所,南宁530007;3.广西大学农学院,南宁530005;4.广西农业科学院微生物研究所,南宁530007)
对影响香蕉叶斑病菌喙突脐蠕孢生长和产孢碳、氮源的统计学分析
杜瑞卿1†,林善海2,3†,黄思良1*,张征田1,覃丽萍4,黎起秦3
(1.南阳师范学院生命科学与技术学院,河南南阳473061;2.广西农业科学院甘蔗研究所,南宁530007;3.广西大学农学院,南宁530005;4.广西农业科学院微生物研究所,南宁530007)
为了解不同碳源和氮源对香蕉叶斑病菌喙突脐蠕孢不同菌株的生长和产孢影响存在的共性与个性差异,该文利用聚类分析、判别分析和相关分析等多种统计分析法对实验数据进行深度解析.分析结果显示,碳源对菌株CLER09、D087与JL05的生长和产孢量有显著影响,其中乳糖是供试3菌株最适生长和产孢的碳源;在不同碳源中供试3菌株的菌落直径和产孢量之间呈极显著相关.氮源对菌株CLER09、D087与JL05的产孢量有显著影响,对菌落直径无显著影响,其中L-半胱氨酸与L-苯丙氨酸是供试3菌株生长和产孢的最适宜氮源.同时,各菌株对碳源和氮源又表现出各自的特性.因此,对于适宜香蕉叶斑病菌喙突脐蠕孢生长和产孢的碳源和氮源的选取,多菌株主要考虑其共性碳源和氮源,单菌株则应考虑菌株的各自特性碳源和氮源.
喙突脐蠕孢;碳源;氮源;聚类分析;判别分析;相关分析
SummaryExserohilum rostratum is one of the important pathogens causing banana leaf spots,which has a wide host range.The effects of carbon and nitrogen sources on colony diameters and sporulation among different isolates of E.rostratum have been analyzed using conventional variance analysis method;however,this method was impossible to differentiate the common carbon and nitrogen sources from the species and the isolate-specific ones for growth and sporulation.
In-depth difference analyses of various carbon and nitrogen sources were performed to determine the nutritional characteristics of E.rostratum causing banana leaf spot disease,and to provide a basis for disease management.
Three isolates(CLER09,D087 and JL05)of the pathogen were used as the experimental ones.The Czapek’s medium was used as a basal medium for nutritional tests on carbon and nitrogen sources.The sucrose in the basal medium was substituted with an equal amount of each of the 20 carbon sources tested.The potassium nitrate in the basal medium was substituted with an equal amount of each of the 26 nitrogen sources tested.The basal medium lacking sucrose and that lacking potassium nitrate were used as the controls for carbon and nitrogen utilization tests,respectively.The three isolates were inoculated on the basal media containing different carbon and nitrogen sources at 28℃for 4 days.The colony diameters and the numbers of conidia produced were separately investigated.The data obtained were evaluated using multiple statistical methods including cluster analysis,discriminatory analysis and comprehensive correlation analysis.
The results indicated that the carbon sources had significant effect on growth and sporulation of isolates CLER09,D087 and JL05.Of the carbon sources tested,lactose was identified as the most suitable general carbon source for growth and sporulation of the three isolates.Maltose,sucrose,glucose,α-lactose,xylitol,D-mannose,D-galactose,soluble starch,xylose,L-arabinose,inositol,dextrin and glycerin were identified as the suitable carbon sources for growth and sporulation.Significant correlation was observed between the mean colony diameters and the numbers of conidia produced among the three isolates.Nitrogen sources had significant effects on the numbers of conidia produced,not on the colony diameters.L-cysteine and L-phenylalanine were the most suitable nitrogen sources for growth and sporulation of the three isolates.L-proline and potassium nitrate were identified as the suitable nitrogen sources for growth and sporulation of the three isolates.The isolate CLER09 had the following nutritional characteristics:maltose,α-lactose,D-mannose and dextrin as the carbon sources were suitable for growth and sporulation followed by L-histidine;sucrose as a carbon source was unsuitable for growth and sporulation;significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the carbon sources;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the nitrogen sources.The isolate D087 had the following nutritional characteristics:D-mannose as a carbon source was unsuitable for growth and sporulation;asparagines,thymine,glutamic acid and vitamin B1 had the secondary suitability as the carbon sources for growth and sporulation;significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the carbon sources;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the nitrogen sources.Isolate JL05 had the following nutritional characteristics:glucose and trehalose were the most suitable carbon sources for growth and sporulation followed by mannitol;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to both carbon and nitrogen sources.
In conclusion,general and individual carbon and nitrogen requirements existed among isolates of E.rostratum for growth and sporulation.
香蕉叶斑病是由多种病原真菌引起的一类世界性病害,由多种真菌侵染引起[1-4].林善海等[5-6]研究表明,喙突脐蠕孢[Exserohilum rostratum(Drechsler)K.J.Leonard&Suggs]是广西香蕉叶斑病病原菌中重要的一种,研究该菌的生活环境和生物学特性,是防治香蕉叶斑病的重要基础.同时,喙突脐蠕孢寄主广泛,多种重要粮食、经济作物和园林植物等受其侵害,生长和产量受到较大影响,有时可造成严重的经济损失.例如,喙突脐蠕孢侵染玉米严重时,种子侵染率达到85%,病叶率达到18%[7-8].同时,该菌还是多种杂草的生防菌[9-10],显示出广泛的遗传多样性和环境适应性.深入了解该菌生长与产孢的营养需求,对病害防控有指导意义.喙突脐蠕孢生长与产孢受多种环境因素的影响,国内外学者对来源于不同寄主植物上的喙突脐蠕孢的生物学特性做了部分研究,包括温度、寄主范围、分生孢子在土壤中的存活状况等[6,11-13],其中碳源和氮源是重要影响因素.林善海等[14]测试了20种不同的碳源和26种不同的氮源对3株喙突脐蠕孢营养生长和产孢的影响,从表观上说明了3菌株对碳、氮源的利用情况,但因对数据的分析仅采用常规方差分析方法,未能很好地区分碳源和氮源在种水平及菌株个体水平上的差异.由于喙突脐蠕孢菌株间遗传多样性的存在,要求我们不仅要了解菌株的共性营养要求,还要研究了解菌株水平的个性营养要求.另一方面,被感染作物所包含的碳源和氮源也是多种多样的,不可能是单一成分,这就要求不仅要研究单一碳源或氮源成分对喙突脐蠕孢的影响,还要分析多种成分对喙突脐蠕孢的共性影响.对各种碳源(或氮源)对多种菌株的影响,仅靠单指标方差分析和多重比较还不够,不能综合全面地反映它们之间的复杂关系.因此,本研究采用聚类分析、判别分析和相关分析等综合统计分析法,对碳源和氮源的单一性和共性、喙突脐蠕孢3菌株的特性和共性以及菌落直径和产孢量之间的相关性进行分析研究,以便为更好地防治喙突脐蠕孢对作物和植物的侵害提供参考.通过对林善海等的原始数据[15]进行深度分析,找出不同碳、氮源对喙突脐蠕孢种水平和菌株个体水平生长与产孢的影响,为从营养学角度研究病害的防控打下基础.
1 材料与方法
1.1 供试菌株
供试菌为喙突脐蠕孢(Exserohilum rostratum)菌株CLER09、D087和JL05.3株供试菌均由Lin等[6]从香蕉喙突脐蠕孢叶斑病病斑上分离获得,保存在广西农业科学院微生物研究所,同时寄存于中国普通微生物菌种保藏管理中心(CGMCC),收藏号分别为CGMCC3.14160、CGMCC3.14161和CGMCC3.13461.将供试菌株分别接种于马铃薯葡萄糖琼脂(PDA)培养基平板上,28℃培养5 d,用打孔器取直径为6 mm菌碟备用[14].
1.2 实验方法
碳、氮源对菌株营养生长及产孢量的影响:以查氏培养基(KNO32 g,KH2PO40.5 g,KCl 0.5 g,MgSO40.05 g,FeSO4·7 H2O 0.5 g,蔗糖30 g,琼脂17 g,蒸馏水1 000 m L)为碳、氮源测试的基础培养基.测定碳源利用时,以等质量的乳糖、木糖、木糖醇等碳源分别置换基础培养基中的蔗糖;测定氮源利用时,以等质量的苯丙氨酸、甲硫氨酸、L-脯氨酸等氮源分别置换KNO3;以不加蔗糖的基础培养基为碳源对照,不加KNO3的基础培养基为氮源对照.将以上培养基分装,高温灭菌后倒平板,每个处理3皿(每皿约10 m L).将菌碟单点接种于测试培养基平板中央,28℃培养4 d,用十字交叉法测量菌落直径,以2次测量的平均值代表该皿的菌落直径;在每皿的菌落中加入10 m L无菌水,洁净三角玻棒刮取菌落,制作分生孢子悬浮液,悬浮液浓度较高时适当用无菌水稀释,用血球计测定产孢量[14].
1.3 统计分析方法
1.3.1 聚类分析 聚类分析就是按照样本的指标值将样本进行分类,本研究就是依据3株供试菌的菌落直径和产孢量2种指标(共6个指标),对21种不同碳源样本(或27种不同氮源样本)分别聚类.本研究采用的是快速聚类分析,即K-Mean聚类.由于碳源只有21种,所以开始确定分为3类.氮源有27种,比较多,所以开始确定为4类,2样本距离采用欧氏距离公式:
式中:dij为i样本与j样本间的距离;k为每个样本的观察指标个数;xit,xjt分别为i样本和j样本的第t个指标值.然后依据dij大小对样本聚类.i=1,2,…,21(或1,2,…,27);j=1,2,…,21(或1,2,…,27);t=1,2,…,6.
1.3.2 判别分析 先根据已知类别的事物的性质(自变量或观察指标变量),建立函数式(自变量或观察指标变量的线性组合,即判别函数,本研究采用Fisher判别法),然后对未知类别的新事物进行判断以将之归入已知的类别中,或根据判别结果对已分类别的正确与否做出判断.利用SPSS 19.0软件可建立Fisher线性判别函数:
式中:t为类别个数;k为观察指标变量个数(3株供试菌的综合判别分析k=6.单个菌株的判别分析k=3).将每个样本(无论是已知分类或未知分类)的k个指标值分别代入t个判别函数中,哪个函数值最大,就说明该样本属于该函数对应的类别.
本研究根据聚类结果对3株供试菌(2个指标变量)综合判别分析和单个菌株的判别分析,分析3株供试菌的共性和各自的特性.
1.3.3 相关分析 相关分析是研究2个或多个变量之间相互变化影响的关系,分析的方法比较多,本文仅对本研究涉及的方法简单介绍.
直接相关分析:对菌落直径和产孢量在所有碳源和氮源上的直接相关分析,采用Pearson简单相关系数:
式中:n为样本个数,在所有碳源上n=21,在所有氮源上n=27;X为菌落直径;Y为产孢量;和分别表示X和Y的平均数.
以上分析利用SPSS 17.0和Matlab 7.0进行运算.
2 结果与分析
2.1 碳源对菌株营养生长及产孢量的影响
2.1.1 实验结果 表1中的数据来自文献[14],碳源按序号从小到大排列,这里与聚类分析结果共表.在菌落直径上,3菌株间在依碳源排序上,大小变化不同步,存在变化差异的不一致性.3菌株的产孢量排序是没有规律的,三者之间的差异更明显,菌株CLER09产孢量最大,其次是菌株D087,菌株JL05最小.
2.1.2 聚类分析 对实验结果进行聚类分析,分类结果见表1.菌株CLER09、D087和JL05具有共同性质的碳源分为3类(依据聚类结果图,基本分为3大类):第一类为最适宜生长碳源,仅有乳糖,3菌株的菌落直径、产孢量都很高.第二类为适宜生长碳源,3菌株的菌落直径、产孢量较第一类稍小,包括麦芽糖、蔗糖、葡萄糖、α-乳糖、木糖醇、D-甘露糖、D-半乳糖、可溶性淀粉、木糖、L-阿拉伯糖、肌醇、糊精、甘油、对照.第三类为不适宜生长的碳源,3菌株的菌落直径、产孢量明显减小,包括甘露醇、海藻糖、α-甲基-D葡萄糖苷、D-果糖、胆固醇、菊糖,其中3株测试菌株均不能在菊糖上生长.
各指标在不同类别间的显著性检验见表2.除产孢量3(JL05的产孢量)在3个类别上不具有显著性外,其他5个指标在3个类别上都具有显著性.
表1 碳源对喙突脐蠕孢不同菌株营养生长及产孢影响的分类Table 1 Grouping of carbon sources influencing vegetative growth and sporulation of different E.rostratum isolates
续表1 碳源对喙突脐蠕孢不同菌株营养生长及产孢影响的分类Continuation of Table 1 Grouping of carbon sources influencing vegetative growth and sporulation of different E.rostratum isolates
表2 碳源对喙突脐蠕孢菌落直径与产孢量影响的相等性检验Table 2 Equality tests of the effects of carbon sources on the colony diameters formed and the numbers of conidia produced by E.rostratum
2.1.3 判别分析 根据表1的分类结果进行判别分析,判别函数极显著(P<0.01,判别函数省略,下同).3个类别的正确判别率为100%.判别结果见图1,3个碳源类别都以类别中心分布集中,类别之间分界清楚,距离较远.
依据分类,对菌株CLER09、D087和JL05各自的21种不同碳源分别进行判别分析.
对菌株CLER09判别分析的结果见表3.判别函数极显著(P<0.01).3个类别的正确判别率如下:第一类为100%,第二类为64.3%,第三类为100%.误判为第一类的是麦芽糖、α-乳糖、D-甘露糖、糊精,它们的菌落直径和产孢量都接近或超过了第一类碳源乳糖,为该菌株最适宜生长碳源.误判为第三类的是蔗糖,它的产孢量很低,为该菌株不宜生长处理.以上误判的碳源,对菌株CLER09而言,反映了该菌株对碳源需求的特性.
图1 碳源判别分析散点图Fig.1 Discriminatory analysis of carbon sources
表3 对3株供试菌碳源的判别分析Table 3 Discriminatory analysis of carbon sources of the three experimental isolates
对菌株D087进行判别分析,结果见表3.判别函数极显著(P<0.01).3个类别的正确判别率如下:第一类为100%,第二类为85.7%,第三类为100%.误判为第三类的是:D-甘露糖、对照,它们的菌落直径和产孢量都接近或低于第三类碳源,对菌株D087而言,D-甘露糖就是不适宜生长碳源,反映了该菌株对碳源需求的特性.
对菌株JL05进行判别分析的结果见表3.判别函数极显著(P<0.01).3个类别的正确判别率如下:第一类为100%,第二类为85.7%,第三类为66.7%.误判为第一类的是葡萄糖、海藻糖,它们的菌落直径和产孢量都接近或超过了第一类碳源乳糖,是该菌株最适宜生长碳源.误判为第二类的是甘露醇,它的菌落直径和产孢量都接近或超过了第二类碳源,是该菌株适宜生长碳源.误判为第三类的是对照,它的菌落直径和产孢量都接近或低于第三类碳源,为菌株不宜生长处理.以上误判的碳源,对菌株JL05而言,反映了该菌株对碳源需求的特性.
2.1.4 相关分析 表4数据表明,菌株LCER09的菌落直径和产孢量在各个类别上没有显著相关性,但在所有碳源上表现出显著相关性.菌株D087的菌落直径和产孢量在第二类别和所有碳源上表现出显著相关性.菌株JL05的菌落直径和产孢量在各个类别和所有碳源上都没有显著相关性.
表4 反映碳源对喙突脐蠕孢不同菌株的菌落直径和产孢量影响的相关系数Table 4 Correlation coefficients reflecting the effects of carbon sources on the colony diameters formed and the numbers of spores produced by E.rostratum
2.2 氮源对菌株营养生长及产孢量的影响
2.2.1 实验结果 表5的数据来自文献[14],碳源按序号从小到大排列,这里与聚类分析结果共表. 3菌株的菌落直径表现出从大到小的变化趋势,但它们之间存在变化的不一致性.3菌株的产孢量排序没有规律,三者之间的差异更明显,菌株CLER09产量最大,其次是菌株D087,菌株JL05最小.
2.2.2 聚类分析 将实验结果进行聚类分析,可分为4类(表5).
表5 氮源对喙突脐蠕孢不同菌株生长及产孢影响的分类Table 5 Grouping of nitrogen sources influencing growth and sporulation of different E.rostratum isolates
续表5 氮源对喙突脐蠕孢不同菌株生长及产孢影响的分类Continuation of Table 5 Grouping of nitrogen sources influencing growth and sporulation of different E.rostratum isolates
对菌株CLER09、D087与JL05具有共性的氮源分为4类(表5):第一类为最适宜生长氮源,为L-半胱氨酸乳糖和L-苯丙氨酸,3菌株的菌落直径、产孢量都很高;第二类为适宜生长氮源,包括L-脯氨酸、KNO3,3菌株的菌落直径、产孢量较第一类稍小;第三类为次适宜生长氮源,包括dl-丙氨酸、L-丝氨酸、叶酸、L-白氨酸、L-异亮氨酸、对照、L-赖氨酸,3菌株的菌落直径、产孢量较第一类明显减小;第四类为不适宜生长氮源,包括L-组氨酸、氨基乙酸等16种氮源,3菌株的菌落直径、产孢量较第三类更小.
各指标在不同类别间的显著性检验见表6.结果表明,3菌株的菌落直径在4个类别上不具有显著性,然而它们的产孢量在4个类别上都具有显著性.
表6 氮源对喙突脐蠕孢不同菌株菌落直径与产孢量影响的相等性检验Table 6 Equality tests of the effects of nitrogen sources on the colony diameters formed and the numbers of spores produced by E.rostratum
2.2.3 判别分析 根据表5的分类结果进行判别分析,结果见表6.判别函数显著(P<0.001).4个类别的正确判别率均为100%.判别结果见图2,4个氮源类别都围绕类别中心分布,类别之间分界清楚,类别中心之间距离相对较远,第二类和第三类分布相对分散,第一类和第四类分布比较集中.
依据分类,对菌株CLER09、D087和JL05各自的27个氮源分别进行判别分析.
对菌株CLER09判别分析的结果见表7.判别函数极显著(P<0.01).4个类别的正确判别率如下:第一、二、三类均为100%,第四类为93.8%,误判为三类的是L-组氨酸,它的菌落直径和产孢量都接近第三类氮源,对菌株CLER09而言,就是次适宜生长氮源,反映了该菌株对氮源需求的特性.
图2 氮源判别分析散点图Fig.2 Discriminatory analysis of nitrogen sources
表7 对3株喙突脐蠕孢菌株氮源的判别分析Table 7 Discriminatory analysis of nitrogen sources of the three E. rostratum isolates
对菌株D087进行判别分析的结果见表7.判别函数极显著(P<0.01).4个类别的正确判别率如下:第一和第二类为100%,第三类为57.1%,第四类为68.8%.第三类误判为第四类的是L-白氨酸、对照、L-赖氨酸,它们的菌落直径和产孢量都接近第四类氮源,对菌株D087而言,就是不适宜生长氮源.第四类误判为第三类的是天冬素、胸腺嘧啶、谷氨酸、维生素B1,它们的菌落直径和产孢量都接近或大于第三类类氮源,是该菌株次适宜生长氮源.第四类误判为第二类的是L-胱氨酸,它的菌落直径和产孢量都接近或大于第二类氮源.以上误判氮源反映了菌株D087对氮源需求的特性.
对菌株JL05进行判别分析的结果见表7.判别函数极显著(P<0.01).4个类别的正确判别率如下:第一、二、四类为100%,第三类为71.4%.第三类误判为第四类的是L-异亮氨酸,它的菌落直径和产孢量都接近第四类氮源,对D087菌株而言,就是不适宜生长氮源.第三类误判为第二类的是对照,它的菌落直径和产孢量都接近或大于第二类氮源.以上误判氮源反映了菌株JL05对氮源需求的特性.
2.2.4 相关分析 表8数据表明,菌株CLER09的菌落直径和产孢量在第一类、第二类和第四类上存在显著相关性,在所有氮源上没有显著相关性.菌株D087的菌落直径和产孢量只在第一类别存在显著相关性,在其他类别和所有氮源上没有显著相关性.菌株JL05的菌落直径和产孢量只在第一类别存在显著相关性,在其他类别和所有氮源上没有显著相关性.3菌株表现出在第一类上存在极显著负相关,在所有氮源上没有显著相关性的一致共性.
表8 反映氮源对喙突脐蠕孢不同菌株菌落直径和产孢量影响的相关系数Table 8 Correlation coefficients reflecting the effects of nitrogen sources on the colony diameters formed and the numbers of spores produced by E.rostratum
3 讨论与结论
3.1 碳源对香蕉叶斑病菌喙突脐蠕孢3株供试菌(CLER09、D087、JL05)的生长和产孢量有显著影响,其中乳糖是3菌株的最适宜生长和产孢的碳源;麦芽糖、蔗糖、葡萄糖、α-乳糖、木糖醇、D-甘露糖、D-半乳糖、可溶性淀粉、木糖、L-阿拉伯糖、肌醇、糊精、甘油是适宜生长和有利于产孢的碳源.该结果反映了3菌株对碳源需求或依赖的共性.
3.2 氮源对香蕉叶斑病菌喙突脐蠕孢3株供试菌(CLER09、D087和JL05)的产孢量有显著影响,对菌落直径无显著影响,其中L-半胱氨酸乳糖、L-苯丙氨酸是3菌株生长和产孢的最适宜氮源;L-脯氨酸、KNO3是3菌株生长和产孢的适宜氮源.该结果也反映了3菌株对氮源需求或依赖的共性.
3.3 菌株CLER09的特性:麦芽糖、α-乳糖、D-甘露糖、糊精是最适宜生长和产孢的碳源;蔗糖是不适宜生长碳源;L-组氨酸是次适宜生长和产孢氮源;碳源使菌落直径与产孢量有显著正相关性,氮源使菌落直径与产孢量无显著正相关性.菌株D087的特性:D-甘露糖和对照(无碳源)是不适宜生长碳源;天冬素、胸腺嘧啶、谷氨酸、维生素B1是次适宜生长氮源;碳源使菌落直径与产孢量有显著正相关性;氮源使菌落直径与产孢量无显著正相关性.菌株JL05的特性:葡萄糖、海藻糖是最适宜生长和产孢的碳源;甘露醇是适宜生长和产孢碳源;碳源使菌落直径与产孢量无显著正相关性;氮源使菌落直径与产孢量无显著正相关性.
低聚糖(单糖和寡糖)易被多种真菌利用于营养生长.本研究结果表明,供试菌株能较好地利用单糖及衍生物(如葡萄糖、L-阿拉伯糖、D-甘露糖、D-半乳糖)、双糖(如乳糖、麦芽糖、蔗糖).少数多糖(如可溶性淀粉和糊精)也可很好地用于营养生长. Kapoor等[11]测试了E.rostratum对D-葡萄糖、D-果糖、蔗糖和淀粉4种碳源的利用情况,结果表明,该菌均能较好利用4种碳源,并通过层析法明确了该菌对淀粉的水解过程:淀粉 →糊精 →麦芽糖 →D-葡萄糖,与本研究结果基本相同.同时各菌株又表现出各自的特性,如麦芽糖、α-乳糖、D-甘露糖、糊精也是菌株CLER09最适宜生长和产孢的碳源;葡萄糖、海藻糖是菌株JL05最适宜生长和产孢的碳源.
目前未见有从统计学上关于E.rostratum对不同氮源利用上的个性与共性的比较报道.本研究表明氮源对E.rostratum的产孢量有显著影响,对菌落生长(菌落直径)无显著影响.有机氮L-半胱氨酸、L-苯丙氨酸、L-脯氨酸都是最适宜或适宜生长和产孢的氮源.总的来看,有机氮比无机氮更有利于E.rostratum的生长,但KNO3仍是E.rostratum适宜生长氮源.E.rostratum对氮源的利用,各菌株又表现出各自特性,如L-组氨酸是菌株CLER09的次适宜生长和产孢的氮源,天冬素、胸腺嘧啶、谷氨酸和维生素B1是菌株D087的次适宜生长氮源.
本研究与林善海等[14]报道的结果既有相同点,也有不同点.林善海等仅是对单个菌株每个指标的直观分析,也没有统筹分析碳源或氮源对菌落直径与产孢量的综合影响,没有分析菌落直径与产孢量之间的相关性问题,缺少全面性和综合性.本研究既考虑了碳源或氮源对3菌株菌落直径与产孢量的综合影响,也分析了3菌株各自受影响的特性,分析了碳源或氮源对菌落直径与产孢量之间相关性的影响.
碳源(或氮源)对E.rostratum的影响是复杂的,既有多种碳源(或氮源)的组合问题,也有每种碳源(或氮源)的含量(或浓度)问题,还有碳源和氮源组合交互影响问题,此外还与温度、水分、光照等其他环境因素有关的问题[15-16].这些环境要素单独或组合的交互影响有待进一步深入研究.
(References):
[1] Grous P W,Groenewald J Z,Aptroot A,et al.Integrating morphological and molecular data sets on Mycosphaerella,with specific reference to species occurring on Musa//Jacom L,Lepoivre P,Marin D,et al.Mycosphaerella Leaf Spot Diseases of Banana,Present Status and Outlook-Proceedings of the 2nd International Workshop on Mycosphaerella Leaf Spot Diseases.Montpellier,France:INIBAP,2003:43-57.
[2] 桑利伟,郑服丛.我国香蕉的主要病害及防治.安徽农业科学,2006,34(39):1841-1845.
Sang L W,Zheng F C.Main diseases of banana in China and its control.Journal of Anhui Agricultural Sciences,2006,34(39):1841-1845.(in Chinese with English abstract)
[3] Surridge A K J.Fungi associated with banana leaf diseases in South Africa.Pretoria:University of Pretoria,2006.
[4] Huang S L,Yan B,Wei J G,et al.First report of plantainzonate leaf spot caused by Pestalotiopsis menezesiana in China.Australasian Plant Disease Notes,2007,2(1):61-62.
[5] 林善海,黄思良,覃丽萍,等.广西香蕉真菌性叶斑病病原菌种群结构分析.植物保护,2011,37(5):181-183.
Lin S H,Huang S L,Qin L P,et al.Investigations on the fungal populations associated with banana leaf spot diseases in Guangxi.Plant Protection,2011,37(5):181-183.(in Chinese with English abstract)
[6] Lin S H,Huang S L,Li Q Q,et al.Characterization of Exserohilumrostratum,a new causal agent of banana leaf spot disease in China.Australasian Plant Pathology,2011,40(3):246-259.
[7] Leonard K J,Thakur R P,Leath S.Incidence of Bipolaris and Exserohilum species in corn leaves in North Carolina. Plant Disease,1988,72:1034-1038.
[8] McGee D C.Seed borne and seed-transmitted diseases of maize in rice-based cropping systems//International Rice Research Institute.Rice Seed Health,Proceedings of the International Workshop on Rice Seed Health.Manila,Philippines:IRRI,1987:203-213.
[9] Cardona R,González M S.First report of Exserohilum rostratum associated with rice seed in Venezuela.Plant Disease,2007,91:226.
[10] Peng G,Boyetchko S M.Effect of variable dew temperatures on infection of green foxtail by Pyricularia setariae,Drechslera gigantea,and Exserohilum rostratum. Biological Control,2006,39:539-546.
[11] Kapoor I J,Tandon R N.Utilization of carbohydrates by Helminthosporium rostratum Drechs.and Deightoniella torulosa(Syd).Ell.(Syn.Helminthosporium torulosum Syd.).Mycopathologia,1966,39(3/4):265-271.
[12] Pratt R G.Comparative survival of conidia of eight species of Bipolaris,Curvularia,and Exserohilum in soil and influences of swine waste amendments on survival.Applied Soil Ecology,2006,31:159-168.
[13] Pratt R G.Enhancement of sporulation in species of Bipolaris,Curvularia,Drechslera,and Exserohilum by growth on cellulose-containing substrates.Mycopathologia,2006,162:133-140.
[14] 林善海,黄思良,岑贞陆,等.环境因素对香蕉叶斑病菌喙突脐蠕孢生长和产孢的影响,菌物学报,2013,32(2):226-238.
Lin S H,Huang S L,Cen Z L,et al.Effects of environmental factors on growth and sporulation of Exserohilum rostratum causing banana leaf spot disease. Mycosystema,2013,32(2):226-238.(in Chinese with English abstract)
[15] 范永山,曹志艳,谷守芹,等.不同诱导因素对玉米大斑病菌附着胞产生的影响.中国农业科学,2004,37(5):769-772.
Fan Y S,Cao Z Y,Gu S Q,et al.Effect of different induction factors on appressorium of Setosphaeria turcica. Scientia Agricultura Sinica,2004,37(5):769-772.(in Chinese with English abstract)
[16] 林福呈,李德葆.植物病原真菌附着胞形成及其基因表达调节.植物病理学报,1997,27(3):193-197.
Lin F C,Li D B.Plant pathogenic fungi appressorium formation and regulation of gene expression.Acta Phytopathologica Sinica,1997,27(3):193-197.(in Chinese with English abstract)
Statistical analysis of carbon and nitrogen sources for growth and sporulation of Exserohilum rostratum causing banana leaf spot disease.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):64-74
Du Ruiqing1†,Lin Shanhai2,3†,Huang Siliang1*,Zhang Zhengtian1,Qin Liping4,Li Qiqin3(1.School of Life Science and Technology,Nanyang Normal University,Nanyang 473061,Henan,China;2.Sugarcane Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China;3.College of Agriculture, Guangxi University,Nanning 530005,China;4.Microbiology Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China)
Exserohilum rostratum;carbon source;nitrogen source;cluster analysis;discriminatory analysis;comprehensive correlation analysis
S 432.4
A
10.3785/j.issn.1008-9209.2014.02.241
河南省高校科技创新团队支持计划项目(2010JRTSTHNO12);广西自然科学基金资助项目(桂科青2013jjBA30044);广西农业科学院科技发展基金重点项目(桂农科2013JZ12).
黄思良,E-mail:silianghuang@126.com
联系方式:杜瑞卿,E-mail:duruiqing8@163.com;林善海,E-mail:shanhailin79@163.com.†为共同第一作者
2014 02 24;接受日期(Accepted):2014 10 14;
日期(Published online):2015 01 19
URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1656.006.html