基于序列特异扩增区域标记的栗疫菌巢式PCR检测技术
2015-06-05麻文建郑磊张静刘洋朱天辉
麻文建,郑磊,张静,刘洋,朱天辉
(四川农业大学林学院,四川雅安625014)
基于序列特异扩增区域标记的栗疫菌巢式PCR检测技术
麻文建,郑磊,张静,刘洋,朱天辉*
(四川农业大学林学院,四川雅安625014)
为建立栗疫菌(Cryphonectria parasitica)快速、准确的检测技术,利用随机扩增多态性DNA技术(random amplified polymorphic DNA,RAPD)对不同来源地的栗疫菌和其他真菌分离物进行PCR扩增,筛选出栗疫菌的RAPD特异片段SCQ494.将特异RAPD片段SCQ494进行分离、回收,与载体p MD®19-T载体连接,转化至大肠埃希菌进行培养,对目标片段克隆测序.根据测序结果,用Primer 5.0软件设计了序列特异扩增区域(sequence characterized amplified region,SCAR)引物CQ1/CQ2和巢式PCR引物CR1/CR2.利用引物CQ1/CQ2通过常规PCR对不同来源地供试栗疫菌可扩增出1条约1 420 bp的条带,对其他供试菌株DNA的PCR产物均无此条带,检测灵敏度为3 pg/μL的基因组DNA;而以引物CQ1/CQ2为外圈引物和引物CR1/CR2为内圈引物进行的巢式PCR可从栗疫菌基因组DNA中扩增出1条大小约875 bp的条带,灵敏度达到30 fg/μL,是常规PCR的1000倍.验证实验表明巢式PCR可以从发病程度不同的栗树枝干和在自然感染的栗树枝条中检测出栗疫菌.
栗疫菌;随机扩增多态性DNA技术;序列特异扩增区域;巢式PCR;分子检测
SummaryChestnut blight,caused by Cryphonectria parasitica,is a destructive disease on chestnut trees as well as an important international disease in the world.At the end of the 19th century and the beginning of the 20th century,this pathogen dispersed rapidly and nearly killed all the American chestnut trees.Cryphonectria parasitica belongs to ascomycetes,which mainly caused considerable damage to species of genus Castanea,such as C.sativa,C.henryi,C.dentata,and so on.In recent years,the chestnut blight tends to be aggravated and has caused tremendous loss in the ecology and economy.The traditional detection methods for C.parasitica are timeconsuming,tedious,laborious,low sensitivity and accuracy.However,previous studies also did not have a lot of detection reports about C.parasitica.Therefore,rapid and efficient detection of C.parasitica is essential for undertaking appropriate and timely disease management measures.
In the present study,polymerase chain reaction(PCR)assay had been developed for accurate and sensitive detection of some plant pathogens,which are much faster and more specific than traditional detection methods.Theobjective of this study was to develop a sequence characterized amplified region(SCAR)marker and PCR detection of C.parasitica.Randomly amplified polymorphic DNA(RAPD)was used to detect DNA polymorphisms between C.parasitica and other strains,and the specific RAPD fragment of C.parasitica was purified and inserted into p MD®19-T vector that was transformed into Escherichia coli and cloned and sequenced.Based on the sequence of the RAPD marker,SCAR primers and the nested-PCR primers were designed and synthesized.Then the specificity and sensitivity of primers were verified.
The results showed that primer S494 generated a polymorphic pattern displaying a 1 400 bp DNA fragment(SCQ494)specific for C.parasitica,but not from any other strains tested.Based on the sequence of SCQ494,the specific SCAR primers CQ1/CQ2 and the nested-PCR primers CR1/CR2 were designed by the aid of the software Primer Premier 5.0.The regular PCR product of all strains of C.parasitica showed a unique fragment of 1 420 bp with primers CQ1/CQ2;the nested-PCR primers CR1/CR2 amplified only a unique 875 bp band from all C. parasitica and there was no amplification from other strains tested.The detection sensitivity with primer set CQ1/ CQ2 was 3 pg/μL for genomic DNA of C.parasitica in 25μL reaction solution.In contrast,nested-PCR with CQ1/CQ2 as the first round primers and CR1/CR2 as the second round primers increased sensitivity to 30 fg/μL for genomic DNA of C.parasitica.In addition,C.parasitica could be specifically detected by nested-PCR assay from diseased plant tissues collected from field and artificial inoculation branches.
In conclusion,nested-PCR for detection of C.parasitica has been developed based on the use of a SCAR marker and has a great significance for the prevention and control of chestnut blight.This is the first report on generation of SCAR markers for detection of C.parasitica and the result of the study may provide an important reference for the detection of other phytopathogen.
由栗疫菌引起的栗疫病(chestnut blight)是一种重要的栗树病害,广泛分布于世界各地,在国内分布也很广,南至广东,北至辽宁,东起江苏,西至山西有10多个省市均有发生,局部地方发病率高达60%[1].栗疫病的发生不仅造成严重的经济损失,而且对生态环境也有一定的影响[2].19世纪末20世纪初,栗疫病的发生使美洲栗遭到全面灭种的威胁,成为植物病害摧毁自然物种的唯一例子[3].栗疫菌主要侵染中国板栗(Castanea mollissima)、欧洲板栗(C.sativa)、锥栗(C.henryi)、美洲板栗(C. dentata)、栎树(Quercus sp.)和山核桃(Carya sp.)等植物,引起寄主溃疡,病部以上枝、树干先干失水,严重时整枝和全株枯死.该菌为兼性寄生菌,具有明显的潜伏侵染特征,在病害侵入植株早期不易被发现,一旦环境因子达到致病条件,6~8 d即可出现病斑,且发展迅速[4].初感染在一些粗皮栗树品种上症状不明显,因而对未显症状的栗树枝干上是否存在栗疫菌则很难做出正确判断.现阶段对栗疫病的检疫方法主要用显微技术和植物组织分离,但多限于已经发病或有明显症状的组织.栗疫菌生长缓慢,常规的植物组织分离往往会产生杂菌,难以快速准确鉴定该病原菌.因此,开发栗疫菌特异性强和灵敏度高的PCR检测技术对栗疫病的早期诊断和防控极为重要.
特异扩增区域(sequence characterized amplified region,SCAR)标记技术是由Para和Miehelmore等首先提出,其原理是通过对随机扩增多态性DNA(random amplified polymorphic DNA,RAPD)目的片段克隆和测序,并根据序列特征设计与原RAPD片段互补的引物,对原模板DNA进行PCR扩增,最终把与原标记片段相对单一位点扩增出来[5-6].由于SCAR标记技术克服了RAPD重复性差和稳定性低的缺点,使得其在基因位点变异检测、种群分析、病原菌小种检测、性别连锁标记、分子辅助育种和遗传分析上有了广泛的应用[7-15].在植物病害检测方面,余仲东等[16]成功地将杨松栅锈病西部和北部2大地理相关菌群的特异性DNA片段转化为SCAR标记.Reddy等[17]运用SCAR标记引物可以灵敏地鉴定感病植物和土壤中的尖孢镰刀菌蓖麻专化型(Fusarium oxysporum f.sp.ricini).此外,SCAR标记技术还被用于对小麦矮星黑穗病菌(Tilletia controversa)、赤腐病菌(Colletotrichum falcatum)、立枯丝核菌(Rhizoctonia solani)AG 1-IB的分子检测研究[18-20].目前,国内外对栗疫菌的分子生物学检测进行了一些研究,如Ma r a等[21- 22]、潘琪等[23]根据栗疫菌的交配型设计了特异性引物及配套巢式PCR引物,用于交配型的分子检测. Popov等[24]根据栗疫菌的交配型的信息素前体编码基因设计了2对特异性PCR引物,用于栗疫菌的分子检测.本研究采用SCAR标记技术,通过栗疫菌特异的RAPD片段序列分析和SCAR特异性引物设计,建立了一种快速、准确、灵敏的栗疫菌分子检测方法,旨在为栗疫菌的检疫、综合防治及进一步研究提供依据.
1 材料与方法
1.1 材料
供试菌株:15个栗疫菌为本实验室工作人员从四川、河南、湖北、重庆等地收集保存的种群;其他供试菌17个,其中3个为本实验室保存,其余均分离自本地栗树上,并由四川农业大学林学院林木病理实验室保存.除病原菌外,部分参试菌株通过形态学初步鉴定和分子生物学技术鉴定到属(表1).
表1 实验供试菌株Table 1 Strains used in this study
试剂:基因组DNA提取试剂盒和琼脂糖凝胶回收试剂盒购自北京天根生物技术公司;DL2000 DNA标志物、Taq DNA聚合酶、d NTP、大肠埃希菌(Escherichia coli)JM109感受态和p MD®19-T载体等购自大连宝生物公司;其他试剂均为进口或国产分析纯.
供试板栗品种:红光,2~3年生,由四川农业大学林学院苗圃提供.自然发病植株样品,由泸州古蔺县林业局提供.
主要培养基:菌株培养用马铃薯葡萄糖琼脂(potato dextrose agar,PDA)培养基和马铃薯葡萄糖液体培养基(potato dextrose broth,PDB).
仪器:恒温培养箱、冰箱、PCR仪、分光光度计、水平电泳仪和凝胶成像分析系统等.
1.2 方法
1.2.1 供试菌株基因组DNA提取 供试菌株在PDA上纯化培养5 d后,从菌落边缘挑取菌丝块接入PDB中,25℃、150 r/min摇床振荡培养7 d,过滤收集菌丝,冷冻干燥后用液氮研磨成菌丝粉,之后按照北京天根生物技术公司生产的基因组DNA提取试剂盒说明书提取DNA.检测DNA含量和纯度后,-20℃保存备用.
1.2.2 RAPD-PCR扩增 10 bp的随机引物(购自上海生工生物工程有限公司)用于RAPD-PCR反应.反应体系和程序参见文献[25],并优化调整,最终确定反应体系:总体积为25μL,其中含有2.5 μL 10×PCR缓冲液,1μL随机引物(10μmol/L),2μL d NTP(2.5 mmol/L),2μL MgCl2(25 mmol/ L),0.2μL Taq DNA聚合酶(5 U/μL),1μL供试菌株模板DNA(30 ng/μL),加灭菌重蒸水补足25 μL.PCR反应程序:94℃预变性4 min;94℃变性40 s,37℃退火30 s,72℃延伸1.5 min,共35个循环;最后72℃延伸5 min.
反应结束后,取5μL PCR产物加1μL溴酚蓝混合后在1%(1×TAE)琼脂糖凝胶中电泳,100 V,30 min;经EB染色后,在凝胶成像系统上检测并拍照分析,筛选出能稳定、特异性地扩增栗疫菌基因组DNA的引物和RAPD特异片段.
1.2.3 RAPD特异片段分析、克隆和测序 将扩增所得的栗疫菌RAPD特异目标DNA片段切胶,装入1.5 m L灭菌离心管中.按照DNA胶回收纯化试剂盒说明书进行回收、纯化后将其连接到p MD®19-T载体上,转化到E.coli JM109感受态细胞进行克隆,通过蓝白斑筛选和酶切鉴定后,挑取阳性克隆送往上海生工生物工程有限公司进行测序.
1.2.4 引物设计与合成 采用软件DNAStar-Seq Man对测序结果进行拼接、整合,获得栗疫菌RAPD特异片段的完整序列.利用NCBI核酸数据库与该序列进行BLAST在线比对,分析与已知序列的一致性或相似性.根据栗疫菌RAPD特异的DNA片段序列测序结果,用Primer 5.0软件设计栗疫菌特异性SCAR标记引物CQ1/CQ2及巢式PCR引物CR1/CR2,2对引物分别在GenBank中BLAST在线比对,验证其特异性.引物交由上海生工生物工程有限公司合成.
PCR反应体系为25μL,其中含有2.5μL 10× PCR缓冲液,上、下游引物(10μmol/L)各1μL,2μL dNTP(2.5 mmol/L),2μL MgCl2(25 mmol/L),0.2 μL Taq DNA聚合酶(5 U/μL),1μL模板DNA(30 ng/μL),加灭菌双蒸水补足25μL;用灭菌双蒸水代替模板DNA作阴性对照.PCR反应程序:94℃预变性4 min;94℃变性40 s,59℃退火30 s,72℃延伸1.5 min,共35个循环;72℃延伸10 min.
反应结束后,取5μL PCR产物与1μL溴酚蓝混匀,在1%琼脂糖凝胶中电泳,用EB染色后,在凝胶成像分析系统上拍照分析.
1.2.6 引物灵敏度检测 将提取的栗疫菌基因组DNA按10倍梯度分别稀释成30 ng/μL,3 ng/ μL,300 pg/μL,30 pg/μL,3 pg/μL,300 fg/μL,30 fg/μL,3 fg/μL,300 ag/μL,分别取1μL用于PCR扩增模板.常规PCR反应:利用引物CQ1/CQ2作为PCR反应引物,扩增体系和程序同1.2.2节.巢式PCR:用常规PCR进行第1轮扩增,将其PCR扩增产物稀释10倍,取1μL为第2轮PCR的模板,加入引物CR1/CR2,其他反应体系和程序同常规PCR.
1.2.7 自然发病和人工接种栗树枝干组织中的栗疫菌检测 在四川省泸州市古蔺县板栗疫病发生的栽培区内,随机采集不同发病程度和健康的树枝条.根据病害发生程度,将样品分为发病初期、具有典型症状、当年枯死枝条、病株残体4类.在超净工作台上用灭菌刀片刮取0.3 g左右皮质组织,用试剂盒提取样本基因组DNA后,采用1.2.6节中的巢式PCR扩增体系和程序进行检测.
选取2~3年生健康栗树枝条为实验对象.栗疫菌接种菌体制备及接种参照何邦令等[26]的方法,接种结果以接种枝条出现典型溃疡斑为宜.分别采集从接种3 d后到出现典型病斑不同发病时期的枝条及健康的枝条,按试剂盒说明书提取基因组DNA,PCR检测方法同自然发病组织的检测.
2 结果与分析
2.1 RAPD-PCR扩增结果
引物筛选结果表明,随机引物S494(5′-GGACG CTTCA-3′)的RAPD-PCR扩增结果较理想(图1).引物S494可在栗疫菌DNA扩增出大小约1 400 bp的特异片段,该条带明亮、清晰且稳定出现,其他供试菌株之间均无此片段条带,命名为SCQ494.因此,引物S494为栗疫菌的特异引物,片段SCQ494为栗疫菌的特异RAPD片段.
总而言之,中国经济的高速发展、国内外消费者对高质量产品需求的不断增多,促使力嘉不断调整产品结构,提升印刷技术和企业管理水平,以使产品及市场竞争力持续提高,向世界级标准接轨。
2.2 栗疫菌特异RAPD片段序列分析
对特异片段SCQ494进行回收、克隆、测序后,用软件DNAStar-Seq Man对测序结果进行拼接、整合后,获得全长1 420 bp的序列,与RAPD-PCR扩增片段大小一致(图2).在NCBI核酸数据库进行BLAST比对发现无任何同源序列,将该序列向基因库提交后,获得登录号:KJ729104.
图1 引物S494的PCR扩增电泳Fig.1 Agarose gel electrophoresis patterns of PCR products amplified with the primer S494
图2 SCQ494序列Fig.2 Sequence of SCQ494
2.3 基于SCAR标记的巢式PCR引物设计
根据SCQ494序列,用Primer 5.0软件设计了2对引物CQ1/CQ2和CR1/CR2.正向引物CQ1:5′-GGACGCTTCATAGCCCAGAC-3′和反向引物CQ2:5′-GGACGCTTCAACATGGACTGAT-3′作为巢式PCR第1轮引物,扩增片段大小1 420 bp,位置位于SCQ494序列5′和3′两端,见图2序列两端下划线部分.正向引物CR1:5′-GTTGTTCTG GCGTGCTTAG-3′和反向引物CR2:5′-CATTC TATGCTCTGGCTTCTC-3为巢式PCR第2轮引物,扩增片段大小为875 bp.位置位于SCQ494序列内部198 bp至217 bp和1 051 bp至1 073 bp处,见图2序列中黑体下划线部分.2对引物在GenBank中经BLAST在线比对未发现有同源序列.
2.4 巢式PCR引物特异性检测
以表1中的供试菌株基因组DNA为模板,分别用引物CQ1/CQ2和CR1/CR2进行PCR扩增.结果表明,引物CQ1/CQ2能在供试的栗疫菌DNA中扩增出1条1 420 bp大小的条带,其他供试菌和阴性对照均没有扩增出此条带(图3A).由此说明,通过引物CQ1/CQ2的PCR扩增,成功实现了栗疫菌特异RAPD片段标记向SCAR标记的转化.引物CR1/CR2能在供试栗疫菌DNA中扩增得到875 bp的目的片段,其他参试菌株和阴性对照无此条带(图3B).说明在引物CQ1/CQ2内侧设计巢式PCR引物是可行的,且引物CR1/CR2具有较高的特异性和普遍的适用性.
图3 引物CQ1/CQ2(A)和CR1/CR2(B)的特异性检测Fig.3 Results of PCR amplification using specific primers CQ1/CQ2(A)and CR1/CR2(B)
2.2 PCR扩增栗疫菌基因组DNA的灵敏度检测
用引物CQ1/CQ2对不同质量浓度的栗疫菌基因组DNA进行常规PCR扩增,能得到1420 bp的目的条带,可以检测到3 pg/μL的基因组DNA(图4A);而以引物CQ1/CQ2和引物CR1/CR2组合进行巢式PCR,可获得875 bp的目的片段,最低能检测到30 fg/μL的栗疫菌基因组DNA,检测灵敏度至少提高了1 000倍(图4B).
2.6 自然发病和人工接种栗树枝干组织中的栗疫菌检测
从自然发病和人工接种栗疫菌的供试样品中提取DNA,用引物CQ1/CQ2进行第1轮PCR扩增,可在自然发病的典型症状、当年枯死枝、病株残体及人工接种出现典型症状的样本DNA中扩增出1 420 bp的条带,而健康植株及发病初期和未显症状的样本均没有扩增片段.经巢式PCR进行第2轮扩增,除了能检测到发病初期的样本外,其他样本的检测结果与第1轮扩增结果相同,从样品中扩增出大小875 bp的特异条带(图5).后期对条带回收、测序和比对结果证明与特异RAPD片段一致.由此表明,本研究所设计的基于SCAR标记的巢式PCR可快速准确地从自然发病及人工接种的栗树组织中检测到栗疫菌,该技术可以用于栗疫病的早期诊断.
图4 栗疫菌常规PCR和巢式PCR的灵敏度检测Fig.4 Sensitivity detection of C.parasitic with regular PCRand nested-PCR
图5 利用引物CQ1/CQ2和CR1/CR2扩增不同组织Fig.5 Detection of C.parasitica from different plant tissues with primers CQ1/CQ2 and CR1/CR2
3 讨论
本研究利用RAPD技术筛选出能特异性扩增栗疫菌DNA的随机引物S494和RAPD特异片段SCQ494.基于RAPD特异片段向SCAR标记转化,设计了2对引物,建立了一套快速、灵敏、准确的栗疫菌巢式PCR检测方法.
利用RAPD技术筛选特异引物和片段一般遵循直观判断方法,但这种方法有时会存在很大误差.原因是每条随机引物RAPD-PCR扩增的条带数目会有所差异,加之后期如果凝胶电泳的条件控制不好很容易对特异片段判读错误.RAPD技术本身也存在重复性差、稳定性低等缺点,需要严格控制PCR反应条件,这在一定程度上增加了引物筛选的难度[27],因此,对于筛选出来的引物有必要做重复验证,以确定其是否为特异性引物.本研究用筛选出来的随机引物S494对包括栗疫菌在内的供试菌株的RAPD-PCR扩增发现,引物S494能在栗疫菌中稳定地扩增出一条1 400 bp左右的条带,且条带清晰明亮,其他供试菌株并无此条带产生.因此,认为引物S494所扩增的片段SCQ494是栗疫菌的特异RAPD片段,该片段具有转化为SCAR标记的潜力.本研究对特异RAPD片段SCQ494两端随机引物进行了重新设计,取得了很好的扩增效果,成功实现了RAPD标记向SCAR标记的转化.
以往在RAPD标记向SCAR标记的转化研究中,多是根据随机引物扩增序列只设计1对引物,这种方法对SCAR标记转化成功与否可以通过PCR扩增和电泳检测,能以很直观地方式判断出结果.SCAR标记引物对植物病原菌的检测有很强的特异性,但用于田间样本的检测仍需要有较高的灵敏度.PCR技术对植物病原菌田间检测的一般流程是:提取疑似发病或已发病组织的DNA-PCR扩增—电泳检测—结果判断.但多数情况下从发病初期或是处于潜伏期而未显症状的植物组织样中提取总DNA,病原菌DNA的含量极少,普通PCR技术很难检测到,往往会造成结果不准确.一般认为巢式PCR可以把检测灵敏度提高10~1×105倍,这对靶标病原物的量非常低或存在PCR抑制物时非常重要[28-29].本研究采用巢式PCR检测技术,利用该技术从自然发病程度不同和人工接种感染病原菌未显症状的栗树组织中检测到栗疫菌.表明巢式PCR具有较高的特异性和灵敏度,这对于栗疫菌的分子鉴定、组织检测及田间病原菌的动态监测具有重要的应用价值.
本研究基于栗疫菌RAPD特异片段向SCAR标记转化,设计了2对引物CQ1/CQ2和CR1/ CR2,采用巢式PCR扩增的方法可以准确地检测自然发病和人工接种栗树组织中的栗疫菌.巢式PCR较一般PCR具有更高的特异性和灵敏度,可以用于病害的早期诊断和病原鉴定,此方法可参考应用于栗疫病的检疫,对控制栗疫病的传播和防治有重要的意义.栗疫菌所属的分类地位曾存在很大争议,目前普遍承认的是Cryphonectria属,中文译为隐球赤壳属[30].关于该属中与其亲缘关系较近的其他种类真菌在国内外研究报道较少,而栗疫病在世界范围内都普遍发生,种内又存在很大的遗传变异性[25,31-32],这给栗疫菌的鉴定、检测工作增加了难度.本研究所采用的栗疫菌已包括了四川大部分及其他省份的栗疫病主要发生地区,但仍存在不足之处.为此,下一步的工作将收集更多不同来源地栗疫菌,用于本研究方法的验证范围.
(References):
[1] 陈守常,朱天辉,杨佐忠,等.四川森林病害.成都:四川科学技术出版社,2006:275-276. Chen S C,Zhu T H,Yang Z Z,et al.Forest Disease in Sichuan.Chengdu:Sichuan Publishing House of Science and Technology,2006:275-276.(in Chinese)
[2] Burke K L.The effects of logging and disease on American chestnut.Forest Ecology and Management,2011,261(6):1027-1033.
[3] 郭世保,徐瑞富,刘鸣韬.栗疫病研究进展.中国农学通报,2005,21(5):339-340. Guo S B,Xu R F,Liu M T.Progress in research of chestnut blight.Chinese Agricultural Science Bulletin,2005,21(5):339-340.(in Chinese with English abstract)
[4] 程远渡,易有金,周金伟,等.板栗病害防治研究进展.安徽农业科学,2013,41(19):8170-8171. Cheng Y D,Yi Y J,Zhou J W,et al.Research progress in prevention and control of chestnut disease.Journal of Anhui Agricultural Sciences,2013,41(19):8170-8171.(in Chinese with English abstract)
[5] Paran I,Michelmore R W.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce.Theoretical and Applied Genetics,1993,85(8):985-993.
[6] 孙保娟,李植良,黎振兴,等.SCAR标记转化失败的原因和对策.分子植物育种,2010,8(3):589-594. Sun B J,Li Z L,Li Z X,et al.Reasons for SCAR conversion failure and its remedies.Molecular Plant Breeding,2010,8(3):589-594.(in Chinese with English abstract)
[7] 王刚,李二峰,茆振川,等.对辣椒抗性基因Me3表现毒性的南方根结线虫群体的SCAR分子标记.中国农业科学,2013(5):81-87. Wang G,Li E F,Mao Z C,et al.SCAR molecular markers correlated with populations of Meloidogyne incognita virulent to resistance gene Me3.Scientia Agricultura Sinica,2013(5):81-87.(in Chinese with English abstract)
[8] 古瑜,韩启厚,王武台,等.菜豆抗炭疽病基因SCAR标记在品种抗性鉴定中的应用.园艺学报,2011,38(5):911-920. Gu Y,Han Q H,Wang W T,et al.Application of common bean anthracnose resistance gene SCAR markers in snap bean disease resistance identification.Acta Horticulturae Sinica,2011,38(5):911-920.(in Chinese with English abstract)
[9] 张浩,陈乃中,李正西.中国舞毒蛾六个地理种群的RAPD分析及SCAR标记构建.昆虫学报,2011,54(6):714-721. Zhang H,Chen N Z,Li Z X.Analysis of RAPD markers and development of SCAR markers of six geographic populations of the gypsy moth,Lymantria dispar L.(Lepidoptera:Lymantriidae),from China.Acta Entomologica Sinica,2011,54(6):714-721.(in Chinese with English abstract)
[10] 陈思,曹远银,李天亚,等.小麦秆锈菌生理小种21C3CTH SCAR标记的建立.麦类作物学报,2014,34(6):740-744. Chen S,Cao Y Y,Li T Y,et al.The development of a SCAR marker for Chinese race 21C3CTH of Puccinia graminis f.sp.tritici.Journal of Triticeae Crops,2014,34(6):740-744.(in Chinese with English abstract)
[11] 李仕金,辛培尧,郭鸿彦,等.大麻雄性相关RAPD和SCAR标记的研究.广东农业科学,2013,39(24):151-154. Li S J,Xin P Y,Guo H Y,et al.Study of male-specific RAPD and SCAR marker in Cannabis sativa L.Guangdong Agricultural Sciences,2013,39(24):151-154.(in Chinese with English abstract)
[12] 史利玉,李新海,谢传晓,等.玉米抗粗缩病毒SCAR分子标记的开发.中国农业科学,2011,44(9):1763-1774. Shi L Y,Li X H,Xie C X,et al.Development of SCARs from AFLP markers linked to resistance to maize rough dwarf virus(MRDV)using bulked segregant analysis in maize.Scientia Agricultura Sinica,2011,44(9):1763-1774.(in Chinese with English abstract)
[13] DianeseÉC,de Fonseca M E N,Goldbach R,et al. Development of a locus-specific,co-dominant SCAR marker for assisted-selection of the Sw-5(Tospovirus resistance)gene cluster in a wide range of tomato accessions.Molecular Breeding,2010,25(1):133-142.
[14] Zhao Y E,Wu L P.RAPD-SCAR marker and genetic relationship analysis of three Demodex species(Acari:Demodicidae).Parasitology Research,2012,110(6):2395-2402.
[15] Stewart J E,Andrew M,Bao X,et al.Development of sequence characterized amplified genomic regions(SCAR)for fungal systematics:Proof of principle using Alternaria,Ascochyta and Tilletia.Mycologia,2013,105(4):1077-1086.
[16] 余仲东,张振,曹轩峰,等.松杨栅锈菌两菌群RAPD特异序列的标记转换.中国农业科学,2009,42(1):349-354. Yu Z D,Zhang Z,Cao X F,et al.Specific RAPD-DNA markers transfer of two populations of Melampsora laricipopulina.Scientia Agricultura Sinica,2009,42(1):349-354.(in Chinese with English abstract)
[17] Reddy J M,Raoof M A,Ulaganathan K.Development of specific markers for identification of Indian isolates of Fusarium oxysporum f.sp.ricini.European Journal of Plant Pathology,2012,134(4):713-719.
[18] Liu J H,Gao L,Liu T G,et al.Development of a sequencecharacterized amplified region marker for diagnosis of dwarf bunt of wheat and detection of Tilletia controversa Kühn. Letters in Applied Microbiology,2009,49(2):235-240.
[19] Nithya K,Bukhari K A,Valluvaparidasan V,et al. Molecular detection of Colletotrichum falcatum causing red rot disease of sugarcane(Saccharum officinarum)using a SCAR marker.Annals of Applied Biology,2012,160(2):168-173.
[20] Grosch R,Schneider J H M,Peth A,et al.Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers.Journal of Applied Microbiology,2007,102(3):806-819.
[21] Marra R E,Milgroom M G.PCR amplification of the mating-type idiomorphs in Cryphonectria parasitica. Microbiology,1999,8(11):1947-1950.
[22] Marra R E,Milgroom M G.The mating system of the fungus Cryphonectria parasitica:Selfing and selfincompatibility.Heredity,2001,86(2):134-143.
[23] 潘琪,张国珍,贺伟,等.栗疫菌营养体亲和型多样性比较及野生栗栗疫菌交配型的分子检测.林业科学研究,2012,25(5):604-611. Pan Q,Zhan G Z,He W,et al.Comparison of vegetative compatibility diversity of Cryphonectria parasitica from wild and cultivated chestnut and molecular detection of matingtype of the pathogens from wild chestnut.Forest Research,2012,25(5):604-611.(in Chinese with English abstract)
[24] Popov A P,Tsvetkov I L,Belov A A,et al.Molecular genetic identification of the phytopathogen fungus Cryphonectria parasitica.Microbiology,2010,79(2):223-228.
[25] 徐陈贤,周晓云,王克荣.亚欧美栗疫病菌群体的遗传多样性.生态学报,2005,25(2):232-236. Xu C X,Zhou X Y,Wang K R.Genetic diversity of Cryphonectria parasitica populations in Asia,Europe and North America.Acta Ecologica Sinica,2005,25(2):232-236.(in Chinese with English abstract)
[26] 何邦令,李超,王庆华,等.木霉菌和毛壳菌对板栗疫病的抗生作用.中国森林病虫,2006,25(3):4-7. He B L,Li C,Wang Q H,et al.Antagonism of Trichoderma and Chaetomium against chestnut blight caused by Cryphonecria parasitica.Forest Pest and Disease,2006,25(3):4-7.(in Chinese with English abstract)
[27] 周秀萍,杨长顺,李争鸣,等.RAPD反应体系优化的研究.微生物学杂志,2010(3):96-99. Zhou X P,Yang C S,Li Z M,et al.Optimization of RAPD reaction system.Journal of Microbiology,2010(3):96-99.(in Chinese with English abstract)
[28] 王健生,王佳妹,李潇,等.尖镰孢菌(Fusarium oxysporum)的快速分子检测.植物病理学报,2013,43(3):318-322. Wang J S,Wang J M,Li X,et al.Rapid molecular detection of Fusarium oxysporum by PCR.Acta Phytopathologica Sinica,2013,43(3):318-322.(in Chinese with English abstract)
[29] 纪睿,王健生,廖太林,等.雪松疫霉(Phytophthora lateralis)的快速分子检测.植物病理学报,2014,44(2):113-120. Ji R,Wang J S,Liao T L,et al.Rapid molecular detection of Phytophthora lateralis by PCR.Acta Phytopathologica Sinica,2014,44(2):113-120.(in Chinese with English abstract)
[30] 周而勋,王克荣.栗疫病研究进展.果树科学,1999,16(1):66-71. Zhou E X,Wang K R.Advances in chestnut blight research. Journal of Fruit Science,1999,16(1):66-71.(in Chinese with English abstract)
[31] 朴春根,Kim Kyung-Hee,Lee Sang-Hyun,等.韩国、美国和中国栗疫病菌的遗传变异分析.林业科学研究,2007,20(2):283-286. Pao C G,Kim K H,Lee S H,et al.Genetic variation of strains of Cryphonectria parasitica from Korea,USA and China.Forest Research,2007,20(2):283-286.(in Chinese with English abstract)
[32] Ježic'M,Krstin L,Rigling D,et al.High diversity in populations of the introduced plant pathogen,Cryphonectria parasitica,due to encounters between genetically divergent genotypes.Molecular Ecology,2012,21(1):87-99.
Development of nested-PCR for detection of Cryphonectria parasitica based on the marker of sequence characterized amplified region.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):25-33
Ma Wenjian,Zheng Lei,Zhang Jing,Liu Yang,Zhu Tianhui*(College of Forestry,Sichuan Agricultural University,Ya’an 625014,Sichuan,China)
Cryphonectria parasitica;random amplified polymorphic DNA(RAPD);sequence characterized amplified region(SCAR);nested-PCR;molecular detection
Q 939.95;S 432.44
A
10.3785/j.issn.1008-9209.2014.06.261
教育部博士点基金资助项目(00329701).
朱天辉,E-mail:zhuth1227@126.com
联系方式:麻文建,E-mail:yuren2009@126.com
2014 06 26;接受日期(Accepted):2014 08 22;
日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1649.002.html