高压氧对缺氧缺血1周内新生大鼠脑皮质细胞线粒体膜电势的影响
2014-01-24张小春黑明燕罗娅丽李媛媛戴津津
张小春 黑明燕 罗娅丽 李媛媛 戴津津
·论著·
高压氧对缺氧缺血1周内新生大鼠脑皮质细胞线粒体膜电势的影响
张小春1黑明燕2罗娅丽2李媛媛2戴津津2
目的 研究高压氧(HBO)对新生大鼠缺氧缺血性脑损伤(HIBD)1周内脑皮质细胞线粒体功能的影响,探讨HBO对HIBD可能的保护作用及其机制。方法 新生SD大鼠360只分为正常对照组、HIBD组和HIBD+HBO组,每组120只。HIBD组和HIBD+HBO组结扎左侧颈总动脉后暴露于8% O2+92% N2低氧环境中2 h制备HIBD模型。HIBD+HBO组在缺氧缺血后立即予HBO干预(压力为2 ATA, 每次持续60 min,每日1次,连续7 d),HIBD组不予HBO干预,正常对照组不予结扎左侧颈总动脉和HBO干预。以HIBD模型建立后设为缺氧缺血后0 h时点,3组于0 h、2 h、4 h、6 h、12 h、1 d、2 d、3 d、4 d、5 d、6 d和7 d时点断头处死(各组各时点n=10),取损伤侧脑皮质制备单细胞悬液,予细胞线粒体膜电势(ΔΨm)标记物罗丹明123(Rho123)孵育,用流式细胞仪检测Rho123的平均荧光强度(MFL),并以该MFL值作为ΔΨm值。结果 ①正常对照组脑皮质细胞ΔΨm值为(4.66±0.80)MFL,HIBD组各时点脑皮质细胞ΔΨm值均低于正常对照组相应时点,且最低为0 h时点[(2.85±0.56)MFL],各时点差异均有统计学意义(P<0.05);②HIBD组及HIBD+HBO组脑皮质细胞ΔΨm均呈现降低-恢复-再降低的变化规律,两组ΔΨm初次降低时间均为缺氧缺血后0 h时点,初次恢复时间均为缺氧缺血后2~12 h,再次降低的时间均为缺氧缺血后1~4 d,HIBD+HBO组ΔΨm的再次降低程度更明显且最低为缺氧缺血后3 d时点[(2.62±1.03)MFL];③HIBD组脑皮质细胞ΔΨm在再次降低后未再回复,而HIBD+HBO组ΔΨm在再次降低后,于缺氧缺血后5 d时点后开始恢复,6和7 d时点ΔΨm值逐渐趋近但低于正常对照组水平,差异无统计学意义(P<0.05)。结论 HBO在HIBD后0 h至3 d内不能改善缺氧缺血损伤侧脑皮质细胞的线粒体功能,HIBO后过早开始HBO治疗可能导致受损脑皮质细胞的进一步损伤,但HBO可能在HIBD后5~7 d内可通过改善脑皮质线粒体功能促进HIBD受损细胞功能恢复。
高压氧; 缺氧缺血; 一周内; 脑; 线粒体功能; 新生大鼠
新生儿缺氧缺血性脑损伤(HIBD)在许多国家依然高发且易导致儿童神经系统后遗症[1],而临床上除了亚低温治疗外还没有其他有效治疗手段[2,3]。HIBD的根本病因是脑细胞氧及能量的缺失,缺氧引发的NMDA受体被激活、细胞内游离钙聚集、线粒体功能障碍和其他一系列细胞内外生化指标的改变均参与了缺氧缺血导致的HIBD过程中,最终导致受损脑细胞凋亡或坏死[4]。理论上,可逆转上述病理生理过程的干预手段可以用于治疗HIBD,其中包括改善线粒体功能的干预手段[5]。由于HIBD与缺氧有直接的关联,而高压氧(HBO)可通过高压力的氧疗来影响细胞内能量代谢,因此HBO有可能在缺氧缺血损伤后对抗缺氧所致的脑细胞线粒体功能障碍。临床研究已证实HBO在治疗急性脑水肿时可同时增加受损脑细胞氧供、增加脑血流,同时降低颅内压[6];动物实验研究发现HBO可通过增加氧弥散梯度和改善无氧代谢过程而修复受损伤后的脑细胞线粒体功能[7]。本研究假设HBO可通过改善HIBD受损部位脑细胞线粒体功能而减轻缺氧缺血所致的脑损伤。以代表线粒体功能的线粒体膜电势(ΔΨm)为主要观察指标,建立HIBD新生大鼠模型,以了解HBO对HIBD后新生大鼠脑皮质细胞线粒体功能的影响,为临床应用HBO治疗HIBD找寻可能的实验室依据。
1 方法
1.1 实验动物 出生后7日龄的新生清洁级SD大鼠360只,体重(12.11±1.19)g。由湖南省人民医院动物实验中心提供。本研究遵循中南大学动物实验研究指南规定,并获得中南大学湘雅三医院医学伦理委员会审批。
1.2 分组 将360只大鼠均分为正常对照组、HIBD组和HIBD+HBO组,每组120只。
1.3 HIBD动物模型制备 HIBD组参照文献[9,10]方法建立HIBD大鼠模型,结扎新生大鼠的左侧颈总动脉后,回母鼠身边恢复2 h,再暴露于室温34℃、8% O2+92% N2环境中2 h。
1.4 干预 本研究以HIBD动物模型建立后设定为缺氧缺血后0 h时点(0 h)。①HIBD+HBO组干预措施:HIBD大鼠每舱10只0 h时点进入特制的透明高压氧舱,舱内径为 25 cm×50 cm,舱内温度34℃,舱内氧浓度>85%,舱内压力经过15 min 达到2个大气压(2ATM, 0.2 MPa)并持续60 min出舱,每日1次,连续7日(次间间隔≥24 h);②HIBD组干预措施:HIBD大鼠10只0 h时点进入特制的透明高压氧舱,舱内常温、空气和正常气压环境下持续60 min出舱;③正常对照组干预措施:新生大鼠每舱10只,同HIBD组干预措施。
1.5 流式细胞仪检测脑皮质细胞ΔΨm
1.5.1 脑皮质单细胞悬液制备 各组大鼠在缺氧缺血后0 h、2 h、4 h、6 h、12 h、24 h(为了解单次HBO干预后24 h内ΔΨm的变化规律)和1 d、2 d、3 d、4 d、5 d、6 d和7 d时点(为了解连续多次HBO干预后1周内ΔΨm的变化规律)断头处死(各组各时点10只大鼠),冰上操作取左侧大脑皮质制备单细胞悬液[11],单细胞悬液浓度为2×106·mL-1,活细胞数量采用台盼蓝染色光镜检测法,以保证实验中活细胞数量占流式细胞仪检验细胞的99%以上。
1.5.2 流式细胞仪检测ΔΨm 在大脑皮质单细胞悬液中加入线粒体膜电势标记物罗丹明(Rho)123(1 mmol·L-1)(美国Sigma公司),孵育时间为45 min,孵育温度为37℃,孵育后将标本置于冰上,采用流式细胞仪(Cytomics FC500,美国贝克曼库尔特有限公司)检测Rho123的平均绿色荧光强度(MFL),并以此作为该标本的平均脑细胞ΔΨm值,激发波长为488 nm,散发波长为525 nm。为确保大脑皮质单细胞悬液中活细胞ΔΨm检测有效,每次检测时在孵育前随意选取1份标本加入终浓度为100 mmol·L-1的非耦合剂氢化甲基氯苯基腙(mCICCP,美国Sigma公司)作为阳性对照。
2 结果
如表1和图1所示,缺氧缺血后0 h至7 d 各时点正常对照组ΔΨm值基本无变化,HIBD组和HIBD+HBO组各时点ΔΨm值均低于正常对照组。HIBD组和HBO+HIBD组ΔΨm值均以0 h时点最低;2~6 h时点ΔΨm值有所恢复,HIBD+HBO组均高于HIBD组(P<0.05);之后在12 h至3 d时点又再次降低,且HBO+HIBD组ΔΨm值降低程度更大,两组ΔΨm值在12 h、24 h、2 d和3 d时点差异均有统计学意义(P均<0.05)。缺氧缺血后4~7 d时点HIBD组ΔΨm值呈现平稳趋势,HBO+HIBD组在4~7 d时点ΔΨm值再次开始恢复,6和7 d时点ΔΨm值逐渐趋近但低于正常对照组水平,差异无统计学意义。
Notes HIBD: hypoxic ischemic brain damage; HBO: hyperbaric oxygenation; 1): compared with HIBD+HBO group,P<0.05.n=10 at each time point in every group
图1 缺氧缺血后0 h至7d各时点正常对照组、HIBD组和HIBD+HBO组损伤侧脑皮质细胞ΔΨm的变化
Fig 1 ΔΨm changes of the ipsilateral cortex of HIBD and HBO+HIBD groups at 0 h-7 d time points after HI damage
3 讨论
本研究结果显示,HIBD组0 h 至7 d时点损伤侧脑皮质细胞的ΔΨm值呈现降低-恢复-再降低的变化规律,给予HBO干预后12 h至3 d时点ΔΨm值降低程度更为明显,提示该期间HBO不能通过改善脑细胞线粒体功能而减轻HIBD,但HBO干预后4 ~7 d时点ΔΨm值再次恢复且可接近正常对照组的水平,提示HBO在HIBD损伤后72 h(即亚急性期),可能通过改善线粒体功能而达到减轻HIBD的目的。
脑细胞ΔΨm是线粒体功能的标志[12],本研究采用Rho123检测ΔΨm值,Rho123是一种可与活细胞线粒体膜特异性结合的阳性荧光染料,由于Rho123与线粒体膜结合的程度与ΔΨm呈正相关,因此Rho123被认为是脑细胞线粒体功能的生物标记[13],可通过流式细胞仪检测其荧光强度值定量测定线粒体功能[14,15],但ΔΨm值反映的是存活细胞受损伤后线粒体功能的改变,并不能反映出所有的受损伤神经元,特别是死亡的神经元。HBO很可能并未纠正能量代谢衰竭,而只是促进了损伤但尚存活细胞的线粒体功能的恢复。大鼠脑皮质以神经元细胞为主,本研究采用的单细胞悬液的制备方法与其他类似研究一致[11~14],仅能控制流式细胞仪标本的单细胞悬液浓度为2×106·mL-1,活细胞数量采用台盼蓝染色光镜检测法以保证实验中活细胞数量占流式细胞仪检验细胞的99%以上,但由于本试验方法的限制,目前无法从形态学角度明确给出活细胞的获得能代表多少皮质神经元的具体数据。
哺乳动物对氧的摄入依赖肺泡内外的压力梯度,给予高压力的氧可增加这一压力梯度并有助于提高供应脑组织的氧,动物实验证实1.5 ATA的HBO可使溶解于血浆中的氧含量提高10倍[16]、使脑组织中氧分压达到200~300 mmHg[17]。临床上最常采用的HBO治疗方案为1.8~2.8 ATA、60~90 min[18,19],本研究HBO干预条件采用2 ATA、60 min,2 ATA的HBO可以使得实验动物血浆中氧含量增加10倍以上。HBO已在临床上用于治疗多种神经系统疾病[20,21],并有动物实验报道单次HBO干预可减轻缺氧缺血导致的新生大鼠脑损伤[22],其作用机制可能一方面与HBO提高脑组织内的氧分压、促进氧与线粒体内的氧化还原酶结合从而改善线粒体功能有关[7,23],另一方面与HBO可抑制细胞凋亡过程有关[24,25]。应用成年大鼠动物模型实验研究也证实大脑中动脉梗塞6 h内给予HBO干预可减轻脑缺血性损伤[26],认为干预越早则治疗效果越好。但本研究结果显示,在新生SD大鼠HIBD后给予HBO干预并未在早期改善脑细胞的线粒体功能,而是在缺氧缺血后3 d时点损伤侧脑细胞的线粒体功能才得到改善,在12 h至3 d时点HBO干预后脑细胞线粒体功能反而更进一步降低,提示HIBD后给予HBO干预可能并不是越早效果越好,分析导致这一结果的原因可能与氧自由基损伤或组织再灌注损伤等机制相关。脑损伤后,氧自由基和氮自由基大量产生,在细胞防御系统功能降低的情况下自由基的升高可导致脂质过氧化反应,最终导致细胞功能障碍[27],而脑组织对脂质过氧化反应尤其敏感,并需要更高的耗氧量来维持正常功能[28],同时由于脑组织清除氧自由基的能力有限、脑组织的过氧化氢酶活性较低以及脑组织内富含诱发产生自由基的铁元素,故脑组织对抗自由基损伤的自然防御能力更差[23]。本研究结果显示HIBD+HBO组在缺氧缺血后4~7 d时点损伤侧大脑皮质的ΔΨm值明显高于HIBD组,由此推断在度过HIBD最初的急性期之后,HBO可能通过改善线粒体功能而减轻HIBD。
早产儿视网膜病变和高氧肺损伤是临床医生高度重视的问题,因此在应用HBO治疗HIBD时,必然会考虑到HBO的安全性问题。一项随机临床试验结果显示每24 h间断给予2 ATA的HBO治疗2~3次(每次60 min)对于外伤导致的脑损伤患者是安全的[23],动物实验结果显示给予早产新生大鼠HBO治疗1 h不会导致与视网膜病变相关的视网膜结构改变或视网膜血管增生[21],而Yoles等[29]应用不同日龄的新生狗研究发现,在脑代谢、脑血流稳定性、脑细胞电生理方面,日龄越小的新生狗对HBO导致的氧毒性耐受力越强。本研究采用的是7日龄的新生SD大鼠,HBO的压力为2 ATA、时间为60 min,未在HBO氧毒性方面进行相关观察,仅根据现有研究报道推测,本研究采用的HBO干预方法对新生SD大鼠产生氧毒性的可能性较小。
本研究的局限性:①各组各时点样本量较小(n=10),数据标准差较大;②HBO对HIBD长期后遗症(如记忆认知能力、大运动功能、行为异常等)的影响没有进行评估;③本研究HBO干预是在HIBD后0 h时点开始,不能回答关于HBO治疗的时间窗问题;④HBO干预后Δψm呈现降低-恢复-再降低-再恢复变化规律的机制尚不明确,这些机制可能牵涉到氧自由基损伤、NMDA受体激活或细胞内游离钙聚集。
致谢:真诚地感谢中南大学湘雅医院儿科杨于嘉教授为本研究无偿提供动物实验专用高压氧舱!
[1] Glass HC, Bonifacio SL, Peloquin S, et al. Neurocritical care for neonates. Neurocrit Care, 2010, 12(3): 421-429
[2] Ma H, Sinha B, Pandya RS, et al. Therapeutic hypothermia as a neuroprotective strategy in neonatal hypoxic-ischemic braininjury and traumatic brain injury. Curr Mol Med, 2012, 12(10): 1282-1296
[3] Pietrini D, Piastra M, Luca E, et al. Neuroprotection and hypothermia in infants and children. Curr Drug Targets, 2012, 13(7): 925-935
[4] Vert P, Daval JL. Cell death and neurogenesis after hypoxia: a brain repair mechanism in the developing rat? Bull Acad Natl Med, 2006, 190(2): 469-484
[5] Cooper CE. In vivo measurements of mitochondrial function and cell death following hypoxic/ischaemic damage to the newborn brain. Biochem Soc Symp, 1999, 66: 123-140
[6] Sukoff MH, Ragatz RE. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery, 1982, 10(1): 29-38
[7] Zhou Z, Daugherty WP, Sun D, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg, 2007, 106(4): 687-694
[8] Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol, 1981, 9(2): 131-141
[9] Hei MY, Tao HK, Tang Q, et al. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage. Braz J Med Biol Res, 2012, 45(10): 962-927
[10] Hei MY, Huang WQ, Liu FR. Effect of rhIGF-1 on cytochrome C and caspase-3 expression in neonatal rats with hypoxic-ischemic brain damage in vivo. Chin J Contemp Pediatr(中国当代儿科杂志), 2010, 12(12): 963-966
[11] Maric D, Maric I, Barker JL. Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic cortex. Cereb Cortex, 2000, 10(6): 561-573
[12] Signoretti S, Marmarou A, Aygok GA, et al. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg, 2008, 108(1): 42-52
[13] Sureda FX, Escubedo E, Gabriel C, et al. Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry. Cytometry, 1997, 28(1): 74-80
[14] Liu J, Yu Z, Guo S, et al. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res, 2009, 87(1): 164-170
[15] Nolan JP, Duggan E, Liu E, et al. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods, 2012, 57(3): 272-279
[16] Jain KK, Baydin SA. Textbook of Hyperbaric Medicine. 3rd edition. Seattle: Hogrefe & Hube Company, 1999
[17] Daugherty WP, Levasseur JE, Sun D, et al. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg, 2004, 101(3): 499-504
[18] Benedetti S, Lamorgese A, Piersantelli M, et al. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen. Clin Biochem, 2004, 37(4): 312-317
[19] Lipsky BA, Berendt AR, Deery HG, et al. Infectious Diseases Society of America. Diagnosis and treatment of diabetic foot infections. Clin Infect Dis, 2004, 39(7): 885-910
[20] Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage. Acta Neurochir Suppl, 2006, 96: 188-193
[21] Calvert JW, Zhou C, Zhang JH. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Exp Neurol, 2004, 189(1): 150-161
[22] Freiberger JJ, Suliman HB, Sheng H, et al. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res, 2006, 1075(1): 213-222
[23] Rockswold SB, Rockswold GL, Zaun DA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg, 2010, 112(5): 1080-1094
[24] Lou M, Chen Y, Ding M, et al. Involvement of the mitochondrial ATP-sensitive potassium channel in the neuroprotective effect of hyperbaric oxygenation after cerebral ischemia. Brain Res Bull, 2006, 69(2): 109-116
[25] Palzur E, Zaaroor M, Vlodavsky E, et al. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res, 2008, 1221: 126-133
[26] Lou M, Eschenfelder CC, Herdegen T, et al. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke, 2004, 35(2): 578-583
[27] Lewén A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma, 2000, 17(10): 871-890
[28] Demopoulos HB, Flamm ES, Seligman ML, Pietronigro DD: Oxygen free radicals in central nervous system ischemia and trauma, in Autor AP (ed): Pathology of Oxygen. New York: Academic Press, 1982: 127-155
[29] Yoles E, Zurovsky Y, Zarchin N, et al. The effect of hyperbaric hyperoxia on brain function in the newborn dog in vivo. Neurol Res, 2000, 22(4): 404-408
(本文编辑:张萍)
Effect of hyperbaric oxygenation on mitochondrial membrane potential of cortex neuronal cells of neonatal rats in the first week after hypoxic ischemic brain damage
ZHANG Xiao-chun1, HEI Ming-yan2, LUO Ya-li2, LI Yuan-yuan2, DAI Jin-jin2
(1 Department of Pediatrics, Central Hospital of Loudi, Loudi 417000, China; 2 Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China)
HEI Ming-yan,E-mail:heiming_yan@aliyun.com
ObjectiveThe initial insult of hypoxic-ischemic (HI) brain damage (HIBD) is the deprivation of oxygen (O2) to the brain cells, followed by a cascade of brain cell damage including mitochondrial dysfunction. Theoretically, hyperbaric oxygenation (HBO) could affect the recovery of mitochondrial function in HIBD by greatly increasing the O2delivery diffusion gradient. The objective of this study was to prove the hypothesis that HBO may reduce HI-induced brain injury via affecting brain cell mitochondrial function, and to understand the changing patterns of mitochondrial function following HBO treatment in the first week after HI.MethodsIn the present study, HIBD rat model and flow cytometer were used to explore the change of ΔΨm, the indicator of mitochondrial function of cortex neuronal cells of neonatal rats after HIBD. Neonatal Sprague Dawley (SD) rat pups were randomly divided into normal control, HIBD, and HIBD+HBO groups. The end of HI was considered to be 0 h time point. The HBO treatment was given at 0h time point, and then once a day for consecutive 7 days (in 24 h intervals). Animals were euthanized at 0, 2, 4, 6, 12 h time points (in order to study the ΔΨm changes at the very early stage after a single dose of HBO treatment), and at 2, 3, 4, 5, 6, and 7 d time points (in order to study the ΔΨm changes after a series of HBO treatment). ResultsThe change of ΔΨm of the ipsilateral cortex in both HIBD and HIBD+HBO groups showed fluctuating change pattern. Within 2 h to 12 h after HI insult, ΔΨm of HIBD group recovered to some extent, but ΔΨm of HIBD+HBO group recovered to almost normal level. A secondary drop of ΔΨm was observed in both groups at 1-4 d after HI insult. The secondary drop of HIBD+HBO group was more severe than that of HIBD group. There was a secondary recovery of ΔΨm observed in HIBD+HBO group in 5-7 d after HI insult, but not in HIBD group. The ΔΨm of HIBD+HBO group recovered again to almost normal level at 6 d time point. The ΔΨm of HIBD group in 2-7 d after HI stayed at low level, showing slowly decreasing tendency.ConclusionHBO in the early stage after HI might not be a good therapy to improve the mitochondrial function in the cerebral cortex. The secondary recovery observed in HIBD+HBO group indicated that HBO treatment may protect HI-induced brain damage by improving neural cell mitochondrial function in the cerebral cortex during sub-acute stage after HI.
Hyperbaric oxygenation; Hypoxic-ischemic; The first week; Brain; Mitochondrial function; Neonatal rat
湖南省自然科学基金课题:11JJ6067
1 湖南省娄底市中心医院儿科 娄底,417000;2 中南大学湘雅三医院儿科 长沙,410013
黑明燕,E-mail:heiming_yan@aliyun.com
10.3969/j.issn.1673-5501.2014.03.011
2014-03-17
2014-05-11)