试论高三数学恒成立问题的解法
2013-04-29阿依夏木古丽·夏尔皮
都市家教·下半月 2013年6期
阿依夏木古丽·夏尔皮
【摘 要】高三数学中的恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
【关键词】高三数学;恒成立;解题过程
一、一次函数型
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于
ⅰ)或ⅱ)可合并定成
同理,若在[m,n]内恒有f(x)<0,则有
例1:对于满足|p|≤2的所有实数p,求使不等式x2+px+1>2p+x恒成立的x的取值范围。
分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。
解略
二、二次函数型
若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有
若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。
例2:设f(x)=x2-2ax+2,当x∈[-1,+∞)时,都有f(x)≥a恒成立,求a的取值范围。
分析:题目中要证明f(x)≥a恒成立,若把a移到等号的左边,则把原题转化成左边二次函数在区间[-1,+∞)时恒大于0的问题。
解:设F(x)= f(x)-a=x2-2ax+2-a.