低强度聚焦超声在神经调控中的作用机制及其应用前景
2024-11-20曹佳智黄林凌文武
摘要:随着脑科学计划的推进,大脑相关研究已成为科研热点,与其相关的神经调控是目前研究的前沿方向。相比传统的神经调控手段,低强度聚焦超声(LIFU)作为一种新兴的神经调控技术,具有无创、可逆、可靶向大脑深层结构等优点,已被国内外学者广泛研究,但关于LIFU神经调控的具体机制还不十分清晰,而机制的阐明对其在相关领域的应用具有指导意义。本文就近年来LIFU神经调控的作用机制的研究进展进行简要综述,并且简要梳理了超声在神经系统的应用,以期为超声神经调控的后续基础和临床研究提供参考。
关键词:低强度聚焦超声;神经调控;作用机制;超声
The mechanism and application prospect of low‑intensity focused ultrasound in neuromodulation
CAO Jiazhi1, HUANG Lin2, LING Wenwu1
1Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, China; 2School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract: The proposal of the Brain Science Project has made brain-related research a hot topic, and its related neuromodulation is a frontier and hot topic of current research. Compared with traditional neuromodulation methods, Low Intensity Focused Ultrasound (LIFU), as an emerging neuromodulation technology, has the advantages of non-invasive, reversible, and targetable deep brain structures. It has been extensively studied by scholars at home and abroad. However, the specific mechanism of LIFU neuromodulation is not very clear, and the clarification of the mechanism has guiding significance for its application in related fields. This article briefly summarizes the research progress on the mechanism of LIFU neural modulation in recent years, and briefly outlines the application of ultrasound in the nervous system, aiming to provide references for the subsequent basic and clinical research on ultrasound neural modulation.
Keywords: low intensity focused ultrasound; neuromodulation; mechanism; ultrasound
脑科学计划的提出使大脑相关研究成为热点,而神经系统作为大脑功能的一部分,是脑科学计划的重要组成部分,与其相关的神经调控是目前研究的前沿热点方向。低强度聚焦超声(LIFU)作为一种新兴的神经调控手段,具有无创、可逆、可靶向大脑深层结构等优点,在神经调控领域研究受到广泛关注。国内外学者对LIFU神经调控作用进行了广泛的探索和研究,但关于LIFU神经调控的具体机制还不十分清晰,而机制的阐明对其在相关领域的应用具有指导意义。本文就近年来LIFU神经调控的作用机制的研究进展进行简要综述,并且简要梳理了超声在神经系统的应用,以期为超声神经调控的后续基础和临床研究提供参考。
目前,神经系统的调控主要依赖电、磁、光、声等物理、化学或生物手段,传统的神经调控技术主要有深部脑刺激、经颅磁刺激、经颅直流电刺激和光遗传学技术4种,其中深部脑刺激需要外科手术植入电极,由于空间位置等原因的限制不能进行多点刺激,并且在使用过程中会涉及到更换电池,增加了感染等风险[1];经颅磁刺激和经颅直流电刺激技术则是利用不同的原理将电流传递到特定的脑区改变神经元的兴奋性从而实现神经调控,但是存在聚焦能力和刺激深度不足的缺点[2];光遗传学技术需要有创植入纤维,尚未进入临床应用[3]。
超声波是一种压力波,在组织中传播时能够传递能量,可以分为高强度超声和低强度超声。当超声波的能量强度足够高,持续时间足够长时,过高的温度将引发蛋白质变性、细胞坏死、组织凝固等效应,造成不可逆的脑组织损伤。获得美国食品药品监督管理局批准的高强度聚焦超声便是利用热效应永久性损伤特定部位组织的方式来达到临床治疗的目的。相比之下,LIFU在神经调控领域使用更为广泛。
1 "超声神经调控
超声在神经调控领域的研究始于20世纪30年代,Harvey[4]首次报道了超声刺激蛙的周围神经系统引起了腓肠肌的运动,证明了超声可以用于神经调控。20世纪50年代,有研究使用聚焦超声照射猫的一侧外侧膝状体,证明超声可以可逆地调节猫的视觉皮层诱发电位[5]。此后,超声作为一种可以调控神经系统的技术受到了国内外学者的关注,并且进行了大量的实验,且取得了一些研究成果。近年来,超声对神经系统的调控研究从早期的离体切片[6]逐步到麻醉[7]、清醒[8]的动物在体研究,从小动物实验[9]、大型动物实验[10]逐步到人体实验[11],从简单的脑电调节等[6]到行为调节[8]、高层次的认知调节(触觉、温度觉等的变化)[12]、学习记忆调节[13]。
2 "超声神经调控机制
现有研究证据表明,超声能够对神经活动进行调节,但是其具体的调控机制仍未明确。国内外学者对LIFU神经调控的作用机制进行了相关探索并且提出了相应的假说。
2.1 "机械通道
超声波是带有能量的机械波,能对被辐射的物体施加压力,被辐射的组织能够随着声压的变化压缩和膨胀[14]。细胞膜具有流动性,有研究提出声辐射力作用于嵌入细胞膜的机械敏感离子通道,增加了通道开放的可能性,继而形成离子转运等效应,从而改变神经元的活动[15, 16],这也是目前被研究最多和最广泛接受的假说,已有较多实验研究证实。有研究通过实验观察到了聚焦超声作用下电压门控钠、钾、钙通道的激活作用[6, 17]。在离子通道机制的基础上,有学者通过改造的机械敏感离子通道提高了超声刺激神经元的敏感度,不表达改造离子通道的神经元则对超声刺激无反应,首次实现了LIFU对神经元的精确控制[18]。有学者通过对线虫进行基因干预,发现热敏缺陷突变体的线虫依然对LIFU敏感,而机械传感缺陷突变体的线虫对LIFU作用没有反应,为超声波通过机械作用的方式刺激神经元提供了证据[19]。
2.2 "空化效应
超声波在组织传递的过程中,遇到组织中的液体时形成微气泡,微气泡被正压压缩,在负压的时膨胀的现象称为空化效应。根据振荡幅度,空化效应可以分为稳定空化(微泡震荡)和不稳定空化(微泡破裂)[20, 21],目前被认为是超声波进行神经调控的重要机制之一。在生物组织内,空化作用是在某个阈值以上实现的,该阈值取决于声波发射频率、温度和压力等参数,与之关系最密切的参数是声辐射力。足够的声辐射力使得气体颗粒撞击细胞膜的磷脂双分子层,继而引起膜的扩张和收缩[22],使得膜的构象发生变化从而产生电容电流,或者产生新的离子运输通道,或者激活膜上的机械敏感离子通道,改变其兴奋性[23]。有学者提出了膜内空化的概念,在BLS模型中,双层膜能够直接将声能转化为细胞水平的机械应力和应变,从而影响离子通道的状态[24]。
2.3 "热效应
LIFU所引起的组织温度变化很小,通常不超过0.1℃[25],广泛认为此微小的温度变化不会对脑组织产生影响。尽管如此,仍有部分学者考虑到神经元膜电位的温度依赖性,认为即使温度的微小变化也可能影响细胞膜的兴奋性[26];也有学者提出超声可能通过热效应扰乱突触信号通路来抑制神经元活动[27],还有学者提出热神经调节的概念[28],因此热效应可能是LIFU进行神经调控的作用机制之一。
2.4 "其它机制
除了上述提到的3种作用机制外,超声神经调控的作用机制还存在其它假说。听觉旁路机制假说认为超声对神经调控的一部分反应可能是通过听觉通路引起的间接神经调控所导致的[29-31],而不是神经回路的直接激活。有研究采用耳聋鼠模型验证了听觉神经通路在经颅磁声耦合刺激中的重要作用[32]。然而,有学者通过基因敲除小鼠(目的是消除其听觉反应)外周听觉活动的实验证实了LIFU诱发的运动反应不是刺激外周听觉系统的结果,证明了LIFU可以直接激活运动回路[33]。基于此,该假说作为LIFU神经调控的机制尚存在争议,目前尚未被认为是LIFU神经调控的主要作用机制,有待进一步的研究。LIFU导致脑电震荡动力学改变的机制也逐渐被提出。一项实验证实了LIFU改变了β频率的大脑固有活动的相位分布,而不影响γ频率,验证了经颅聚焦超声能够改变体感诱发电位的幅度及其相关的频谱内容,说明LIFU调控神经活动具有空间特异性[34]。有研究通过对多部位脑电图在时间域、频率域和空间域等的分析,实现了对LIFU诱发的脑激活时空分布进行成像的可行性[35]。此外,超声与微管震荡相互作用从而影响神经活动的假说也被提及[36]。
3 "超声在神经系统的应用
除了探讨超声神经调控的现象和机制,国内外大量实验证明,LIFU有助于神经系统疾病的治疗,主要集中于癫痫[37]、阿尔茨海默病[38]、卒中[39]、颅脑外伤[40]、减少痛感[41]、调节学习记忆[42]等。首先是开放血脑屏障。2001年,有研究首次证明在超声造影剂微泡的作用下,聚焦超声可以短暂、局部、可逆地开放血脑屏障而不损伤周围脑组织[43],这有助于治疗药物、基因载体或其他临床干预方式到达靶区脑组织,并且该方式被认为是安全的[44-46]。其次,有研究报道,低强度脉冲超声波的刺激可能增加了具有神经保护作用的脑源性神经营养因子等的产生[47],并且通过抑制有害的小胶质细胞过度激活来减少神经炎症,同时开放血脑屏障的功能帮助清除病理性蛋白,这种效应可能有助于神经系统的调控,改善神经退行性疾病的预后[47, 48]。再者,超声能够无创性液化血凝块促进脑出血血凝块的清除和溶栓[49],还能通过调节水通道蛋白改善创伤性脑损伤的脑水肿[50],调控迷走神经有效降低血压[51],调控膝周神经降低患者的疼痛感[41],调节神经血管耦合引起血流动力学改变[52]。除此之外,超声和新型电磁纳米材料结合产生的电磁场可以调控细胞内信号,从而影响突触的可塑性并且控制神经行为,改善退行性疾病[53]。
4 "总结与展望
综上所述,LIFU能够通过机械通道、空化效应等作用机制进行神经调控和神经系统疾病的治疗,但仍有一些问题需要关注,比如神经系统的复杂性、超声参数的多变性和尚未统一的实验范式。未来仍需要开展相关基础和临床研究来进一步明确更多神经靶点对超声波的潜在电生理和行为反应,优化超声参数,进一步探索超声的精确化定位方式,从而实现超声神经调控的临床应用。
参考文献:
[1] " Okun MS. Deep‑brain stimulation for Parkinson's disease[J]. N Engl J Med, 2012, 367(16): 1529-38.
[2] " Chase HW, Boudewyn MA, Carter CS, et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation[J]. Mol Psychiatry, 2020, 25(2): 397-407.
[3] " Rost BR, Schneider‑Warme F, Schmitz D, et al. Optogenetic tools for subcellular applications in neuroscience[J]. Neuron, 2017, 96(3): 572-603.
[4] " Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues[J]. Am J Physiol Leg Content, 1929, 91(1): 284-90.
[5] " Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound[J]. Science, 1958, 127(3289): 83-4.
[6] " Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound[J]. "PLoS One, 2008, 3(10): e3511.
[7] " Yoo SS, Bystritsky A, Lee JH, et al. Focused ultrasound modulates region‑specific brain activity[J]. Neuroimage, 2011, 56(3): 1267-75.
[8] " Deffieux T, Younan Y, Wattiez N, et al. Low‑intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23(23): 2430-3.
[9] " Colucci V, Strichartz G, Jolesz F, et al. Focused ultrasound effects on nerve action potential in vitro[J]. Ultrasound Med Biol, 2009, 35(10): 1737-47.
[10] Lee W, Lee SD, Park MY, et al. Image-guided focused ultrasound-mediated regional brain stimulation in sheep[J]. Ultrasound Med Biol, 2016, 42(2): 459-70.
[11] "Panczykowski DM, Monaco EA 3rd, Friedlander RM. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74(6): N8.
[12] "Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Nat Neurosci, 2014, 17(2): 322-9.
[13] Huang SL, Chang CW, Lee YH, et al. Protective effect of low-intensity pulsed ultrasound on memory impairment and brain damage in a rat model of vascular dementia[J]. Radiology, 2017, 282(1): 113-22.
[14] Nightingale KR, Palmeri ML, Nightingale RW, et al. On the feasibility of remote palpation using acoustic radiation force[J]. J Acoust Soc Am, 2001, 110(1): 625-34.
[15] Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity[J]. Curr Opin Neurobiol, 2018, 50: 222-31.
[16] Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts[J]. Int J Dermatol, 2007, 46(6): 587-93.
[17] Kubanek J, Shi JY, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Sci Rep, 2016, 6: 24170.
[18] "Ye J, Tang SY, Meng L, et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Lett, 2018, 18(7): 4148-55.
[19] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. J Neurosci, 2018, 38(12): 3081-91.
[20] Radhakrishnan K, Bader KB, Haworth KJ, et al. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents[J]. Phys Med Biol, 2013, 58(18): 6541-63.
[21] "Zhang LL, Lin ZH, Zeng L, et al. Ultrasound‑induced biophysical effects in controlled drug delivery[J]. Sci China Life Sci, 2022, 65(5): 896-908.
[22] Fomenko A, Neudorfer C, Dallapiazza RF, et al. Low‑intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications[J]. Brain Stimul, 2018, 11(6): 1209-17.
[23] "Lentacker I, de Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms[J]. Adv Drug Deliv Rev, 2014, 72: 49-64.
[24]Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound‑induced bioeffects[J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3258-63.
[25] "Pasquinelli C, Hanson LG, Siebner HR, et al. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies[J]. Brain Stimul, 2019, 12(6): 1367-80.
[26] "Buzatu S. The temperature-induced changes in membrane potential[J]. Riv Biol, 2009, 102(2): 199-217.
[27] Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses)[J]. J Acoust Soc Am, 1981, 69(5): 1514-6.
[28] Gong ZR, Dai ZF. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers[J]. Adv Sci, 2021, 8(10): 2002178.
[29] "Sato T, Shapiro MG, Tsao DY. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism[J]. Neuron, 2018, 98(5): 1031-41.e5.
[30]Guo HS, Hamilton Ii M, Offutt SJ, et al. Ultrasound produces extensive brain activation via a cochlear pathway[J]. Neuron, 2018, 99(4): 866.
[31] "Airan RD, Butts Pauly K. Hearing out ultrasound neuromodulation[J]. Neuron, 2018, 98(5): 875-7.
[32] "周晓青, 刘睿旭, 谭如欣, 等. 听觉神经通路在磁声耦合刺激调控运动皮层中的作用[J]. 中国生物医学工程学报, 2021, 40(2): 188-94.
[33] Mohammadjavadi M, Ye PP, Xia AP, et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation[J]. Brain Stimul, 2019, 12(4): 901-10.
[34] Mueller J, Legon W, Opitz A, et al. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics[J]. Brain Stimul, 2014, 7(6): 900-8.
[35] "Yu K, Sohrabpour A, He B. Electrophysiological source imaging of brain networks perturbed by low‑intensity transcranial focused ultrasound[J]. IEEE Trans Biomed Eng, 2016, 63(9): 1787-94.
[36] "Hameroff S, Penrose R. Consciousness in the universe: a review of the 'Orch OR' theory[J]. Phys Life Rev, 2014, 11(1): 39-78.
[37] "Zou JJ, Yi SS, Niu LL, et al. Neuroprotective effect of ultrasound neuromodulation on kainic acid‑induced epilepsy in mice[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(9): 3006-16.
[38] Götz J, Richter‑Stretton G, Cruz E. Therapeutic ultrasound as a treatment modality for physiological and pathological ageing including Alzheimer's disease[J]. Pharmaceutics, 2021, 13(7): 1002.
[39] Liu LX, Du J, Zheng T, et al. Protective effect of low‑intensity transcranial ultrasound stimulation after differing delay following an acute ischemic stroke[J]. Brain Res Bull, 2019, 146: 22-7.
[40] "Zheng T, Du J, Yuan Y, et al. Effect of low intensity transcranial ultrasound (LITUS) on post‑traumatic brain edema in rats: evaluation by isotropic 3‑dimensional T2 and multi‑TE T2 weighted MRI[J]. Front Neurol, 2020, 11: 578638.
[41] "胡珊珊, 刘 "晓, 罗汉才, 等. 低强度脉冲超声调控治疗疼痛性膝骨关节炎的临床研究[J]. 实用医学杂志, 2023, 39(21): 2783-8.
[42] "梁 "燕, 张保朝, 傅国惠. 超声刺激在红藻氨酸诱导的癫痫小鼠中呈现抗癫痫和海马神经保护作用[J]. 中国组织化学与细胞化学杂志, 2021, 30(1): 13-8.
[43] Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology, 2001, 220(3): 640-6.
[44] Rezai AR, Ranjan M, D'Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci U S A, 2020, 117(17): 9180-2.
[45] "Wu HY, Zhou Y, Xu LX, et al. Mapping knowledge structure and research frontiers of ultrasound‑induced blood‑brain barrier opening: a scientometric study[J]. Front Neurosci, 2021, 15: 706105.
[46] "Felix MS, Borloz E, Metwally K, et al. Ultrasound-mediated blood-brain barrier opening improves whole brain gene delivery in mice[J]. Pharmaceutics, 2021, 13(8): 1245.
[47] Chen TT, Lan TH, Yang FY. Low‑intensity pulsed ultrasound attenuates LPS‑induced neuroinflammation and memory impairment by modulation of TLR4/NF-κB signaling and CREB/BDNF expression[J]. Cereb Cortex, 2019, 29(4): 1430-8.
[48] Leinenga G, Götz J. Scanning ultrasound removes amyloid‑β and restores memory in an Alzheimer's disease mouse model[J]. Sci Transl Med, 2015, 7(278): 278ra33.
[49] Monteith SJ, Kassell NF, Goren O, et al. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage[J]. Neurosurg Focus, 2013, 34(5): E14.
[50] "Zheng T, Yuan Y, Yang HX, et al. Evaluating the therapeutic effect of low‑intensity transcranial ultrasound on traumatic brain injury with diffusion kurtosis imaging[J]. J Magn Reson Imaging, 2020, 52(2): 520-31.
[51] "廖海芬, 孟 "文, 牛丽丽, 等. 以低强度聚焦超声刺激大鼠迷走神经的安全性[J]. 中国介入影像与治疗学, 2024, 21(6): 358-62.
[52]Song H, Chen RY, Ren LY, et al. Low intensity transcranial ultrasound stimulation induces hemodynamic responses through neurovascular coupling[J]. iScience, 2024, 27(7): 110269.
[53] Zhao D, Feng PJ, Liu JH, et al. Electromagnetized‑nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain[J]. Adv Mater, 2020, 32(43): e2003800.
(编辑:郎 "朗)