非饱和土地基中双层波阻板屏障对S波的隔离效应研究
2024-01-01江烨马强
摘要:
在传统波阻板的基础上,将屏障隔振改进为相同厚度的双层波阻板。基于非饱和多孔介质和弹性介质中的波动理论,研究非饱和土地基中双层波阻板对S波的隔离效应。根据Helmholtz原理,获得S波入射下非饱和土地基中设置双层波阻板后地表竖向位移解答。首先研究双层波阻板的材料参数对其隔振性能的影响规律,研究发现通过调控双层波阻板的密度和剪切模量能够使双层波阻板隔振屏障获得最优隔振效果;然后对比双层波阻板与相同材质的单层均质波阻板的隔振效果,并分析入射角、频率、饱和度、波阻板的厚度和埋深等物理力学参数对其隔振性能的影响规律。研究结果表明:同一厚度的波阻板隔振体系中,双层波阻板的隔振效率比同等材质的单层波阻板分别提高了49.18%和42.59%;双层波阻板对低频、中频和高频的环境振动均有较好的隔振效果。
关键词:
双层波阻板; 环境振动; 隔振效果; 非饱和土; 振幅衰减系数
中图分类号: TU435""""" 文献标志码:A"" 文章编号: 1000-0844(2024)05-1126-16
DOI:10.20000/j.1000-0844.20221031001
Isolation effect of double-layer wave impeding block
barrier on S-wave in unsaturated foundation
JIANG Ye1, MA Qiang1,2
(1. School of Civil Engineering, Qinghai University, Xining 810016, Qinghai, China;
2. Qinghai Provincial Key Laboratory of Energy-saving Building Materials and Engineering Safety, Xining 810016, Qinghai, China)
Abstract:
This paper presents an improvement to the traditional wave impeding block (WIB) barrier by introducing a double-layer WIB with the same overall thickness. The investigation focuses on the isolation effect of the double-layer WIB on S-waves in an unsaturated soil foundation, Using wave theory in unsaturated porous and elastic media. Based on Helmholtz's principle, the vertical displacement at the ground surface under S-wave incidence after the installation of the double-layer WIB in an unsaturated foundation was derived and obtained. The study initially analyzed the influence of the material parameters of the double-layer WIB on its vibration isolation performance. It was found that the optimal vibration isolation effect could be obtained by adjusting the density and shear modulus of the double-layer WIB. Subsequently, the vibration isolation effects of double-layer WIB were compared with those of a single-layer homogeneous WIB composed of the same material. The analysis included examining the influences of various physical and mechanical parameters, such as incident angle, frequency, saturation, thickness, and buried depth of the WIB on its vibration isolation performance. Results indicated that for WIBs of the same thickness, the double-layer WIB exhibited significantly higher vibration isolation efficiency, 49.18% and 42.59% higher than that of the corresponding single-layer WIB with the same material properties. The double-layer WIB demonstrated an effective vibration isolation effect across low, medium, and high frequencies in environmental vibrations. The double-layer WIB has a good vibration isolation effect on environmental vibration at low, medium, and high frequencies.
Keywords:
double-layer wave impeding block; environmental vibration; isolation effect; unsaturated soil; amplitude attenuation ratio
0 引言
自然界中的天然土体一般是由土颗粒所构成的土骨架和孔隙中的水及空气组成的,建筑工程中如大坝、公路、铁路、机场跑道的压实填土以及绝大多数建筑物的地基都是非饱和土。因此,选择与实际情况更相符的土体,能够反映非饱和状态下的土地基在环境振动下的减振作用。隔振措施的研究具有重要的现实意义。
目前,学者们提出了多种方法对环境振动进行隔离,即通过设置连续型屏障和非连续型屏障对振源进行隔离[1-6]。Chouw等[7-8]提出一种在地基中人为设置波阻板(Wave Impeding Block,WIB)的隔振措施,其分析结果表明WIB的被动隔振效果要优于填充沟。随后,Schmid等[9]采用二维频域边界元法也验证了WIB隔振的有效性。Yang等[10]和Hung等[11]比较了WIB和空沟的隔振效果,研究表明在低于截止频率的频率范围内,WIB的隔振效果更好。为进一步研究WIB在单相弹性和两相饱和地基中的隔振性能,Peplow等[12]采用边界积分方程法研究了二维双层地基中WIB的主动隔振效果,结果表明WIB对低频振动有较好的隔振效果。Gao等[13-14]利用数值软件研究了弹性地基中WIB的隔振效果,结果表明WIB对低频振动的隔振效果显著。Thompson等[15]采用边界元法对埋置在轨道下方的WIB隔振性能进行研究,结果表明WIB可有效降低16~50 Hz的环境振动。谢伟平等[16]利用数值软件分析了WIB对地铁振动的控制效果,结果表明WIB对5~15 Hz的低频振动隔离效果较好。李志江等[17]采用有限元法,比较了均质波阻板和蜂窝波阻板的隔振效果,结论表明蜂窝波阻板的隔振效果更好,但均质WIB在10 Hz以内具有更好的隔振效果。Ma等[18-19]分析了移动荷载作用下弹性地基及饱和土地基中梯度非均匀波阻板的隔振效果。田抒平等[20]基于二维半解析边界元法,研究了Duxseal材料在二维均质弹性地基中的主动隔振效果。随后,高盟等[21]提出了在WIB中填充Duxseal材料进行联合隔振的方法,试验结果表明,DXWIB可以提高减振频宽,尤其在5~70 Hz范围内均能取得较好的隔振效果。尽管上述研究表明,非均质波阻板的隔振效果能够提高WIB的隔振性能,改善WIB仅对低频隔振有效的不足,但这些研究大多倾向于将地基土视为单相弹性或两相饱和介质以简化复杂的动力学问题,难以模拟实际情况。
在实际工程中,非饱和土是土体在自然界中更为普遍的存在状态,饱和度的变化对波在土体中的传播特性有显著的影响。因此,针对非饱和土地基的振动控制问题需要进一步研究。Shu等[22-24]分别研究了非饱和土地基中P1波通过单层和复合多层WIB的传播特性,结果表明,WIB材料的密度和剪切模量对透、反射系数影响显著。Jiang等[25]研究了S波入射下非饱和土地基中单层WIB的隔振性能,结果表明,土体饱和度变化对隔振效果影响显著,WIB的隔振效果随饱和度的增大而提高。此外,根据文献[26]可知,多层薄层介质交界面的差异性越大,其振动波透\,反射效应越显著。因此,本文提出了双层波阻板作为隔振屏障的新型隔振体系。基于非饱和多孔介质与单相弹性介质中波的传播理论及Snell定理,研究了S波入射下非饱和土地基中双层波阻板的隔振性能;推导获得了S波从基岩中入射到非饱和土场地后通过双层波阻板后地表位移的解析解;通过数值算例,分析了密度和剪切模量对双层WIB隔振效果的影响规律,比较了非饱和土地基中设置双层WIB和单层WIB的隔振效果;分析了入射角度、入射频率、饱和度、WIB的埋深、厚度等各种参数对非饱和土地基中双层WIB隔振效果的影响规律,进而为非饱和土地基中双层WIB隔振的应用提供参考。
1 数学模型
考虑在水平半无限基岩层上覆盖一层厚度为H的非饱和土层,土中设置一定厚度的双层波阻板,假设频率为ω的入射S波以任意角度φ入射,其传播示意图如图1所示。
4 数值分析
4.1 数值验证
由于S波从基岩入射,经过多个不同介质交界面时其透、反射问题较为复杂,故将非饱和土地基中双层波阻板退化,选择Li等[32]研究的S波入射下非饱和土层-基岩体系的地面运动来验证本文解的准确性。取与文献[32]一致的物理力学参数,图2
给出了S波入射下无量纲频率ω/ω1=1.0时地表竖向位移放大系数随入射角的变化曲线。从图2可以看出,本文与文献[32]的解有很好的一致性,验证了本文方法的有效性。
4.2 双层WIB材料参数对隔振效果的影响规律
本节采用MATLAB程序中的数值算例分别分析了双层WIB的隔振效果受入射角度、入射波频率、饱和度、阻抗比以及非饱和土地基中双层WIB埋深和厚度的影响情况。具体步骤如下:
非饱和土地基的物理力学参数选自文献[33],土层的材料参数如表1所列,基岩的材料参数如表2所列。
由于饱和度的变化将引起土一系列物理性质的改变,在土的各物理参数中,随饱和度变化较大且对地基动位移的影响也很大的物理量主要有剪切模量、渗透系数和有效应力等参数[34-35]。因此,本文取内摩擦角φ′=21°,并采用式(26)[34]对动剪切模量进行修正:
μ=μs+2 050αln[(Se)-2-1+(Se)-1](tanφ′)(26)
式中:Se为有效饱和度。
当入射S波从基岩入射到非饱和土时,存在入射临界角φcr,其中φcr=arcsin(viS/vrP)≈32.3°。因此,在后文讨论中,取入射角的变化范围为0°~30°。
基于多层薄层介质交界面差异性越大,弹性波振幅衰减越显著的特性[26],本文将波阻板设计成由不同薄层材质组合而成的“双层板”隔振体系,重点讨论波阻板的密度ρ和剪切模量μ的变化对双层波阻板隔振效果的影响。选出最佳隔振效果对应的密度和剪切模量,进而获得双层板隔振体系设计的材料参数。讨论波阻板密度有以下3种情况:
Case1:ρw1=ρw2=2 000 kg/m3;
Case2:ρw1=2 000 kg/m3lt;ρw2=2 700 kg/m3;
Case3:ρw1=2 700 kg/m3gt;ρw2=2 000 kg/m3。
取土层总厚度H=20 m,饱和度Sr=0.8,入射频率ω=10 Hz,双层波阻板厚度Hw1=Hw2=0.5 m,埋深H2=1.0 m,入射角φ=5°。图4分别绘出了3种不同密度情况下地表竖向位移随WIB1和WIB2的剪切模量同时变化的三维曲线。通过数值计算可分别求得3种情形下地表竖向位移最小值及与之对应的剪切模量为:
Case1:当ρw1=ρw2时,μw1=14.5×1013 Pa,μw2=19.9×1013 Pa,地表竖向位移最小值uz=1.23×10-7 m;
Case2:当ρw1lt;ρw2时,μw1=19.6×1013 Pa,μw2=14.9×1013 Pa,地表竖向位移最小值uz=1.11×10-8 m;
Case3:当ρw1gt;ρw2时,μw1=19.8×1013 Pa,μw2=14.7×1013 Pa,地表竖向位移最小值uz=1.73×10-9 m。
根据以上3种情况的计算结果可以看出,在本文考虑的剪切模量范围内,当ρw1=2 700 kg/m3gt;ρw2=2 000 kg/m3时,双层波阻板取得最优的隔振效果。根据文献[25]可知,非饱和土地基中设置WIB后,通过增大WIB的剪切模量可以提高其隔振效果,但随WIB剪切模量继续增加,提高的幅度逐渐降低,且在实际工程中无限制的选择剪切模量更大的材料有较大的难度。因此,可通过设计双层波阻板层间的剪切模量和密度以达到隔振屏障的最优隔振效果。
4.3 双层WIB最优隔振参数下隔振性能分析
取双层波阻板最优隔振效果时的材料参数(密度ρw1=2 700 kg/m3;ρw2=2 000 kg/m3;剪切模量μw1=19.8×1013 Pa;μw2=14.7×1013 Pa),对双层板的隔振性能规律进行分析。本文采用Woods[36]提出的振幅衰减系数AR来衡量双层波阻板的隔振效果,其值越小,效果越好。表达式为:
AR=uu* (27)
式中:u为设置波阻板隔振屏障后的地表位移;u*为自由场地的地表位移。
4.3.1 单层WIB和双层WIB的隔振性能对比
为了对比相同厚度下单层和双层WIB的隔振效果随入射角变化的影响规律,均取埋深H2=1.0 m,饱和度Sr=0.8,入射频率ω=10 Hz,双层WIB的密度为ρw1=2 700 kg/m3,ρw2=2 000 kg/m3,厚度Hw1=Hw2=0.5 m,剪切模量为μw1=19.8×1013 Pa,μw2=14.7×1013 Pa;单层波阻板的两种材料与双层波阻板中的每层材料参数对应,即单层板厚度均取1.0 m的前提下,(1)ρw=2 000 kg/m3,μw=14.7×1013 Pa;(2)ρw=2 700 kg/m3,μw=19.8×1013 Pa。图5绘出了非饱和土地基中分别设置相同厚度的单层和双层WIB后,地表竖直位移振幅衰减系数随入射角度的变化曲线。从图5中可以明显看出,双层WIB的隔振效果均优于任一材料组成的单层均质WIB。其中,当入射角为4°~29°时双层WIB隔振有效,此范围内的平均地表竖向位移振幅衰减系数AR=0.31;当入射角为10°~28°时,ρw=2 000 kg/m3的单层WIB隔振有效,此范围内的平均地表竖向位移振幅衰减系数AR=0.61;当入射角为9°~28°时,ρw=2 700 kg/m3的单层WIB隔振有效,此范围内的平均地表竖向位移振幅衰减系数AR=0.54。由此可知,相同厚度的隔振体系中双层板比单层板隔振有效的角度范围更大、效果更好,其隔振效率比ρw=2 000 kg/m3的单层板隔振体系提高了49.18%,比ρw=2 700 kg/m3的单层板隔振体系提高了42.59%。
4.3.2 饱和度对双层WIB隔振性能的影响
为了研究饱和度对非饱和土地基中双层波阻板隔振性能的影响规律,图6绘出了H=20 m,双层波阻板的厚度Hw1=Hw2=0.5 m,埋深H2=1.0 m,入射频率ω=10 Hz时,其他参数如表1所列,饱和度Sr=0.2\,0.4\,0.6和0.8变化下非饱和土地基中设置双层波阻板后,地表竖向位移振幅衰减系数随入射角度变化的曲线。从图6中可以看出,地表竖向位移振幅衰减系数随入射角的增大先降低到最小值后又非线性增大,即双层板屏障的隔振效果随入射角增大先提高后降低。其中,当S波入射角为5°时,地表竖向位移振幅衰减系数AR均接近于0。由图6可知,Sr=0.2的平均振幅衰减系数AR=0.27;Sr=0.4的平均振幅衰减系数AR=0.20,隔振效率比Sr=0.2时提高了25.93%;Sr=0.6的平均振幅衰减系数AR=0.17,隔振效率比Sr=0.4时提高了15%;Sr=0.8的平均振幅衰减系数AR=0.31,
隔振效率比Sr=0.6时降低了45.16%。因此,随着饱和度增大,双层板隔振效果先提高后降低。
4.3.3 入射波频率对双层WIB隔振性能的影响
城市常见的环境振动中,强夯引发的振动主频集中在10~20 Hz,高架引发的振动集中在20~25 Hz,地铁引发的振动频率则较高,集中在50~80 Hz,总体上环境振动的频率一般不超过100 Hz。因此,本文取上述环境振动主频率来讨论非饱和土地基中双层波阻板的隔振效果。图7绘出了H=20 m,埋深H2=1.0 m,饱和度Sr=0.8,双层波阻板厚度Hw1=Hw2=0.5 m,其他参数如表1所列,入射频率ω=10 Hz\,25 Hz\,50 Hz\,100 Hz变化下非饱和土地基中设置双层波阻板后,地表竖向位移振幅衰减系数随入射角度的变化曲线。从图7可以看出,ω=25 Hz的平均振幅衰减系数AR=0.49,隔振效率比ω=10 Hz时降低了37.43%;ω=50 Hz的平均振幅衰减系数AR=0.62,隔振效率比ω=25 Hz时降低了20.97%;ω=100 Hz的平均振幅衰减系数AR=0.29,隔振效率比ω=50 Hz提高了53.23%。由此可见,随着频率的增大,双层WIB的隔振效果先降低后提高。
4.3.4 埋深对双层WIB隔振性能的影响
为了研究双层波阻板的埋深对非饱和土地基中双层板隔振性能的影响规律,图8绘出了H=20 m,双层板厚度Hw1=Hw2=0.5 m,饱和度Sr=0.8,入射频率ω=10 Hz,其他参数如表1所列,埋深H2=1.0 m\,2.0 m和3.0 m变化下非饱和土地基中设置双层波阻板后,地表竖向位移振幅衰减系数随入射角度的变化曲线。由图8可知,H2=2.0 m的平均振幅衰减系数AR=0.23,隔振效率比H2=1.0 m时提高了25.81%;H2=3.0 m的平均振幅衰减系数AR=0.22,隔振效率比H2=2.0 m时提高了4.35%。因此,随波阻板埋深增大,双层板屏障隔振有效的角度范围逐渐增大,其隔振效果逐渐提高,但提高的幅度有所降低,且WIB埋深的变化没有改变AR取到最小值对应的S波入射角。
4.3.5 厚度对双层WIB隔振性能的影响
为了研究双层波阻板的厚度对非饱和土地基中双层板隔振性能的影响规律,图9绘出了H=20 m,双层板的埋深H2=1.0 m,饱和度Sr=0.8,入射频率ω=10 Hz,其他参数如表1所列,双层板的厚度Hw1=Hw2=0.3 m\,0.5 m\,0.7 m和0.9 m变化下非饱和土地基中设置双层波阻板后,地表竖向位移振幅衰减系数随入射角度的变化曲线。由图9可知,Hw1=Hw2=0.3 m的平均振幅衰减系数AR=0.34,Hw1=Hw2=0.5 m的隔振效率比Hw1=Hw2=0.3 m时提高了8.82%;Hw1=Hw2=0.7 m的平均振幅衰减系数AR=0.29,隔振效率比Hw1=Hw2=0.5 m时提高了6.45%;Hw1=Hw2=0.9 m的平均振幅衰减系数AR=0.28,隔振效率比Hw1=Hw2=0.7 m时提高了3.45%。因此,随波阻板厚度增大,双层板屏障隔振有效的角度范围逐渐增大,其隔振效果逐渐提高。同时还可发现,随着波阻板厚度的增大,取得最佳隔振效果对应的S波入射角逐渐减小。
5 结语
本文基于非饱和多孔介质与单相弹性介质中波的传播理论及Snell定理,研究了双层波阻板在与实际更相符合的非饱和土地基中的隔振性能。比较了双层波阻板和单层波阻板隔振性能,分析了入射频率、饱和度、WIB的埋深、厚度等各种物理力学参数对非饱和土地基中双层波阻板隔振效果的影响规律,得出如下结论:
(1) 双层板的材料参数差异性对双层波阻板隔振屏障的隔振效果影响显著,相同厚度下双层波阻板的隔振效率比相同材质的单层波阻板分别提高了49.18%和42.59%。通过设计双层波阻板的密度和剪切模量可获得双层波阻板的最优隔振效果。就本文算例而言,当S波入射角为5°时隔振效果最佳。
(2) 双层波阻板隔振屏障能有效隔离城市中常见的环境振动。随着入射频率增加,双层波阻板的隔振效果先降低后提高,ω=25 Hz的隔振效率比ω=10 Hz降低了37.43%;ω=50 Hz的隔振效率比ω=25 Hz降低了20.97%;ω=100 Hz的隔振效率比ω=50 Hz提高了53.23%。
(3) 双层波阻板的隔振效果随饱和度的增大先提高后降低;增加波阻板的厚度和埋深均可以扩大隔振有效的S波入射角度范围,也可以提高其隔振效果,但提高的幅度逐渐降低;随S波入射角度增大,双层波阻板的隔振效果先提高到最佳隔振效果后非线性降低。
参考文献(References)
[1] 刘中宪,王少杰.非连续群桩屏障对平面P、SV波的隔离效应:二维宽频带间接边界积分方程法模拟[J].岩土力学,2016,37(4):1195-1207.
LIU Zhongxian,WANG Shaojie.Isolation effect of discontinuous pile-group barriers on plane P and SV waves:Simulation based on 2D broadband indirect boundary integration equation method[J].Rock and Soil Mechanics,2016,37(4):1195-1207.
[2] 徐平,周新民,夏唐代.应用屏障进行被动隔振的研究综述[J].地震工程学报,2015,37(1):88-93.
XU Ping,ZHOU Xinmin,XIA Tangdai.Review on passive vibration isolation using barriers[J].China Earthquake Engineering Journal,2015,37(1):88-93.
[3] 巴振宁,刘世朋,吴孟桃,等.饱和土中周期排列管桩对平面SV波隔振的解析求解[J].岩土力学,2021,42(3):627-637.
BA Zhenning,LIU Shipeng,WU Mengtao,et al.Analytical solution for isolation effect of plane SV waves by pipe piles with periodic arrangement in saturated soil[J].Rock and Soil Mechanics,2021,42(3):627-637.
[4] 姜广州,王洋,张冲冲,等.层状土中双排环形排列桩隔振效果的研究[J].铁道科学与工程学报,2021,18(4):918-925.
JIANG Guangzhou,WANG Yang,ZHANG Chongchong,et al.Study on vibration isolation effect of double rows of annular piles in layered soil[J].Journal of Railway Science and Engineering,2021,18(4):918-925.
[5] 周凤玺,梁玉旺,刘佳.多空沟对弹性波的散射及隔振性能分析:SH波入射[J].振动与冲击,2021,40(24):263-268.
ZHOU Fengxi,LIANG Yuwang,LIU Jia.Analysis of elastic wave scattering and vibration isolation performance of multiple open trenches:SH incident[J].Journal of Vibration and Shock,2021,40(24):263-268.
[6] 巴振宁,刘世朋,吴孟桃,等.周期分布桩体对平面SH波隔振效应的解析求解[J].岩土力学,2020,41(9):2861-2868.
BA Zhenning,LIU Shipeng,WU Mengtao,et al.Analytical solution for isolation effect of plane SH waves by periodically distributed piles[J].Rock and Soil Mechanics,2020,41(9):2861-2868.
[7] CHOUW N,LE R,SCHMID G.An approach to reduce foundation vibrations and soil waves using dynamic transmitting behavior of a soil layer[J].Bauingenieur,1991,66(1):215-221.
[8] CHOUW N,LE R,SCHMID G.Propagation of vibration in a soil layer over bedrock[J].Engineering Analysis with Boundary Elements,1991,8(3):125-131.
[9] SCHMID G,CHOUW N,LE R.L.Shielding of structures from soil vibrations[C]//Proceedings of the Fifth International Conference on Soil Dynamic and Earthquake Engineering.Southampton:Computational Mechanics Publications,1991:651-662.
[10] YANG Y B,HUNG H H.A parametric study of wave barriers for reduction of train-induced vibrations[J].International Journal for Numerical Methods in Engineering,1997,40(20):3729-3747.
[11] HUNG H H,YANG Y B,CHANG D W.Wave barriers for reduction of train-induced vibrations in soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(12):1283-1291.
[12] PEPLOW A T,JONES C,PETYT M.Vibration transmission in a layered ground with a wave impedance block[M]//Ground Dynamics and Man-made Processes:Prediction,Design and Management.London:Thomas Telford Publishing,1998:57-67.
[13] GAO G Y,CHEN J,GU X Q,et al.Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading[J].Soil Dynamics and Earthquake Engineering,2017,93:99-112.
[14] GAO G Y,ZHANG Q W,CHEN J,et al.Field experiments and numerical analysis on the ground vibration isolation of wave impeding block under horizontal and rocking coupled excitations[J].Soil Dynamics and Earthquake Engineering,2018,115:507-512.
[15] THOMPSON D J,JIANG J,TOWARD M G R,et al.Mitigation of railway-induced vibration by using subgrade stiffening[J].Soil Dynamics and Earthquake Engineering,2015,79:89-103.
[16] 谢伟平,高俊涛,毛云.WIB用于地铁引发低频振动的减振分析[J].华中科技大学学报(城市科学版),2009,26(2):1-4.
XIE Weiping,GAO Juntao,MAO Yun.WIB for mitigation analysis of subway-induced low-frequency vibration[J].Journal of Civil Engineering and Management,2009,26(2):1-4.
[17] 李志江,何锃,谭燕,等.HWIB用于高速铁路引发低频振动的隔振分析[J].华中科技大学学报(自然科学版),2011,39(3):34-38.
LI Zhijiang,HE Zeng,TAN Yan,et al.Isolation analysis of low-frequency vibration from high speed railways by using HWIB[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2011,39(3):34-38.
[18] MA Q,ZHOU F X,ZHANG W Y.Vibration isolation of saturated foundations by functionally graded wave impeding block under a moving load[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(2):108.
[19] 马强,周凤玺,刘杰.梯度波阻板的地基振动控制研究[J].力学学报,2017,49(6):1360-1369.
MA Qiang,ZHOU Fengxi,LIU Jie.Analysis of ground vibration control by graded wave impeding block[J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1360-1369.
[20] 田抒平,高盟,王滢,等.二维均质弹性地基Duxseal材料主动隔振研究[J].振动工程学报,2019,32(4):701-711.
TIAN Shuping,GAO Meng,WANG Ying,et al.Two dimensional analysis of Duxseal material as active vibration isolation in homogeneous elastic foundation[J].Journal of Vibration Engineering,2019,32(4):701-711.
[21] 高盟,张致松,王崇革,等.竖向激振力下WIB-Duxseal联合隔振试验研究[J].岩土力学,2021,42(2):537-546.
GAO Meng,ZHANG Zhisong,WANG Chongge,et al.Field test on vibration isolation performance by WIB-Duxseal under vertical excitation[J].Rock and Soil Mechanics,2021,42(2):537-546.
[22] SHU J H,MA Q.Study the propagation characteristics of P1-wave passing through composite multilayer wave impeding block in unsaturated soil[J].The European Physical Journal Plus,2022,137(4):503.
[23] 舒进辉,马强,周凤玺,等.非饱和土地基中P1波通过波阻板的传播特性研究[J].岩土力学,2022,43(4):1135-1146.
SHU Jinhui,MA Qiang,ZHOU Fengxi,et al.Propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil[J].Rock and Soil Mechanics,2022,43(4):1135-1146.
[24] 舒进辉,马强,张吾渝.非饱和土地基中P1波通过复合多层波阻板的传播特性研究[J].振动工程学报,2023,36(2):445-457.
SHU Jinhui,MA Qiang,ZHANG Wuyu.Propagation behavior of P1-wave passing through composite multilayer wave impeding block in unsaturated soil[J].Journal of Vibration Engineering,2023,36(2):445-457.
[25] JIANG Y,MA Q.Study on vibration isolation effect of wave impeding block in unsaturated soil under S-wave incidence[J].Acta Mechanica,2022,233(10):4119-4139.
[26] 孙成禹,李振春.地震波动力学基础[M].北京:石油工业出版社,2011.
SUN Chengyu,LI Zhenchun.Foundation of seismic wave dynamics[M].Beijing:Petroleum Industry Press,2011.
[27] CHEN W Y,XIA T D,HU W T.A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium[J].International Journal of Solids and Structures,2011,48(16-17):2402-2412.
[28] WEI C F,MURALEETHARAN K K.A continuum theory of porous media saturated by multiple immiscible fluids:I. Linear poroelasticity[J].International Journal of Engineering Science,2002,40(16):1807-1833.
[29] BORJA R I.On the mechanical energy and effective stress in saturated and unsaturated porous continua[J].International Journal of Solids and Structures,2006,43(6):1764-1786.
[30] DULLIEN F A L.Porous media:fluid transport and pore structure[M].2nd ed.San Diego:Academic Press,1992.
[31] VAN GENUCHTEN M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J].Soil Science Society of America Journal,1980,44(5):892.
[32] LI W H,ZHENG J,TRIFUNAC M D.Saturation effects on ground motion of unsaturated soil layer-bedrock system excited by plane P and SV waves[J].Soil Dynamics and Earthquake Engineering,2018,110:159-172.
[33] 陈炜昀,夏唐代,陈伟,等.平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播[J].应用数学和力学,2012,33(7):781-795.
CHEN Weiyun,XIA Tangdai,CHEN Wei,et al.Propagation of plane P-waves at the interface between an elastic solid and an unsaturated poroelastic medium[J].Applied Mathematics and Mechanics,2012,33(7):781-795.
[34] 徐明江,魏德敏.非饱和土地基的三维非轴对称动力响应[J].工程力学,2011,28(3):78-85.
XU Mingjiang,WEI Demin.3D non-axisymmetrical dynamic response of unsaturated soils[J].Engineering Mechanics,2011,28(3):78-85.
[35] LU Z,FANG R,YAO H L,et al.Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load[J].International Journal for Numerical and Analytical Methods in Geomechanics,2018,42(9):1057-1077.
[36] WOODS R D.Screening of surface wave in soils[J].Journal of the Soil Mechanics and Foundations Division,1968,94(4):951-979.
(本文编辑:任 栋)