APP下载

抗性淀粉防病保健功能研究进展

2023-03-26赖双定刘炳霄杨林

粮食科技与经济 2023年6期
关键词:代谢保健

赖双定 刘炳霄 杨林

摘要:膳食纤维因具有防病保健功效、能够促进人类健康而日益受到广泛关注。抗性淀粉不会被小肠快速消化吸收,易被结肠中微生物菌群分解发酵,因此,现已成为新型膳食纤维的重要来源。除提供营养功能外,抗性淀粉还具有有益的生理调控作用,可以有效预防和缓解诸多疾病,具有巨大的开发价值和应用潜力。为了深入探究抗性淀粉的防病保健功效,文章综述了抗性淀粉有效调控肠道疾病、高脂血症、糖尿病与肥胖症等的最新研究进展,分析了抗性淀粉代谢等分子作用机制,并展望了抗性淀粉防病保健应用的发展方向。

关键词:抗性淀粉;防病;保健;代谢

中图分类号:TS231 文献标志码:A DOI:10.16465/j.gste.cn431252ts.20230626

基金项目:国家重点研发计划项目(2022YFF1300504)。

Research progress on disease prevention and health care function of resistant starch

Lai Shuangding, Liu Bingxiao, Yang Lin

( School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 )

Abstract: Dietary fiber has been paid more and more attention because of its function of preventing disease and promoting human health. Resistant starch is not quickly digested and absorbed by the small intestine, and is easily decomposed and fermented by the microbial flora in the colon, so it has become an important source of new dietary fiber. In addition to providing nutritional function, resistant starch also has beneficial physiological regulation effects, can effectively prevent and alleviate many diseases, and has great development value and application potential. In order to further explore the efficacy of resistant starch in disease prevention and health care, this article reviewed the latest research progress on the effective regulation of resistant starch in intestinal diseases, hyperlipidemia, diabetes and obesity, analyzed the molecular mechanism of resistant starch metabolism, and prospected the development direction of resistant starch in disease prevention and health care application.

Key words: resistant starch, disease prevention, health and fitness, metabolism

抗性淀粉(resistant starch,RS)是種新型的膳食纤维成分,既具有不溶性膳食纤维的安全性,又具有可溶性膳食纤维的特性和优势,经过肠道菌群发酵后能产生短链脂肪酸(short chain fatty acids,SCFAs)等发酵分解产物[1]。此外,RS具有饱腹感强、消化率低、血糖生成指数(glycemic index,GI)低等特点[2],能够有效预防和控制肠道疾病、高脂血症、糖尿病与肥胖症等严重危害人类健康的慢性疾病。因此,作为淀粉的优化产品,RS因其优良的加工特性及重要的生理保健功能成为功能性食品领域的研究热点[3]。

本文拟概述RS的相关内容,重点综述RS在防病保健方面的功效,并探讨其作用机制,以期为RS的精深研究及开发利用提供参考依据。

1 抗性淀粉的分类与理化性质

RS最初由Englyst等[4]发现,是指在健康人体内不被小肠消化分解的淀粉及其分解物的总称。根据淀粉的消化速度和营养特性可将其分为三大类:快消化淀粉(rapidly digestible starch,RDS)、慢消化淀粉(slowly digestible starch,SDS)和RS。根据来源、结构特性和酶解性质等不同,研究者通常将RS分为以下五类:① 物理包埋淀粉(physically trapped starch,RS1)主要存在于部分研磨的谷物和豆类种子中,因其被蛋白质或细胞壁包裹,不能充分膨胀或分散,从而难以被淀粉酶接近[5];② 抗酶解的天然淀粉颗粒(resistant starch granules,RS2)主要存在于生马铃薯、青香蕉和高直链玉米淀粉中,具有高度致密性或特殊结晶结构,难以被酶解消化[6];③ 回生淀粉(retrograded starch,RS3)是指糊化的淀粉在冷却或存储过程中,分子重排结晶形成的高度致密的聚合物淀粉,不容易被淀粉酶水解[7];④ 化学改性淀粉(chemically modified starch,RS4)是指经化学改性引入新官能团或改变淀粉分子结构而产生的抗酶解淀粉[8];⑤ 直链淀粉—脂类复合物(amylose-lipid complexed starch,RS5)是淀粉与脂质相互作用形成的单螺旋复合物,具有高度的热稳定性,且难以与淀粉酶结合[9]。

在大多数情况下,RS1和RS2作为天然淀粉,在食品加工过程中会失去对消化的抵抗力,而RS3、RS4与RS5的热稳定性高,经蒸煮等高温处理后仍能保持一定抗消化特性[10]。RS难溶于水,但可以在2 mol/L KOH或DMSO溶液中溶解。其平均聚合度为30~200,相对分子质量分布范围为104~108,淀粉颗粒结晶结构稳定[2]。相比于传统的膳食纤维,RS具有高耐热性、低持水性与色白味淡等特点,这使得在处理过程中RS能够提供良好的加工性,并改善最终产品的质地。

2 抗性淀粉的防病保健性

近年来,大量的动物和人体实验证明,摄入RS可以有效改善动物和人体的代谢紊乱,预防或辅助治疗多种慢性代谢疾病,包括肠道疾病、高脂血症、糖尿病与肥胖症等。

2.1 抗性淀粉与肠道疾病

RS具有抵抗小肠中淀粉酶消化的特性,在结肠被微生物发酵产生SCFAs,主要包括乙酸、丙酸和丁酸等。这些代谢产物可以通过多种机制发挥多重抗炎和抑癌等生理作用,包括调节肿瘤坏死因子α(tumor necrosis factor α,TNF-α)信号传导、miRNA表达和氧化应激相关途径等[11-12]。同时,SCFAs能作为组蛋白去乙酰化酶(histone deacetylase,HDAC)抑制剂[13],并且还能够抑制Wnt信号通路的活性[14]。此外,RS能减少氨等毒素的吸收[15],保护结肠细胞DNA免受膳食蛋白质引起的损伤[16-17]。这些作用有助于减少肠道功能失调,并降低结肠癌等疾病的患病风險。

RS能够通过调节肠道微生物群落的组成和代谢产物来影响免疫功能,降低肠道疾病的发病率。Koay等[18]报道了喂食RS的小鼠肠道微生物群落代谢产物的种类和数量显著增加,如吲哚-3-丙酸,并促进有益菌群异杆菌属(Allobaculum)和双歧杆菌属(Bifidobacterium)等的生长。梁单[19]发现马铃薯RS可以增加益生菌乳酸杆菌属(Lactobacillus)等菌属丰度,促进SCFAs的产生,还能提高结肠紧密连接蛋白Occludin和ZO-1的表达,降低血清中的炎症因子和脂多糖水平,从而维护肠道的屏障功能。Li等[20]报道了RS对肠道微生物群落结构的影响,发现其可以促进瘤胃球菌属(Ruminococcus)等有益菌群的增殖,抑制肠球菌属(Enterococcus)等有害菌群的生长。RS含量高的稻米可促进SCFAs大量合成,增加益生菌普雷沃氏菌(Prevotellaceae)和抗炎粪杆菌(Faecalibacterium)的丰度,并降低肠道微生物群落失衡标志菌变形杆菌(Proteobacteria)和巨单胞菌(Megamonas)的丰度,对肠黏膜具有抗炎和调节作用[21]。

RS还可以调节肠道免疫防御和炎症反应,改变某些致癌基因或它们产物的表达,从而抑制结肠癌、结肠炎等疾病的发展。饲喂RS的结肠癌小鼠其总SCFAs、乙酸、丙酸、丁酸浓度明显升高,同时凋亡酶Caspase-3的水平上调,结肠炎症和氧化应激指标中的β-葡萄糖醛酸酶和丙二醛水平降低[22]。含有改性籼稻RS的饮食可以减少结肠癌小鼠体内隐窝异常病灶的数量,并促进抑癌基因(antigen presenting cell,APC)的表达,抑制癌基因(B-cell lymphoma-2,Bcl-2)的表达,上调凋亡蛋白Bax的作用,诱导早期结肠癌小鼠细胞凋亡[23]。Wang等[24]报道,RS饮食干预通过上调结肠癌小鼠体内真核起始因子(eukaryotic initiation factor 2α,elF2α)与内质网应激相关激酶(protein kinase RNA-like ER kinase,PERK)的表达水平,抑制致癌相关代表基因的表达,从而促进结肠肿瘤细胞的凋亡和自噬。为了探究RS对炎症性肠病的影响,Valcheva等[25]通过结肠炎模型小鼠实验证实,喂食RS的小鼠结肠分泌的炎症因子IL-6和趋化因子CXCL1显著降低,有效减轻结肠炎小鼠肠细胞损伤。Hartog等[26]发现含有RS的多种纤维混合物增加了抗炎因子IL-10的水平,并且增加了肠系膜淋巴结中调节性T细胞的相对数量,从而改善结肠炎模型小鼠的临床症状。

2.2 抗性淀粉与高脂血症

高脂血症是由脂质代谢紊乱引起的代谢性疾病,也是导致肝病、心脑血管疾病的主要原因之一[27]。其主要表现是血液胆固醇(total cholesterol,TC)、甘油三酯(total glyceride,TG)和低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)升高,高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)降低[28]。RS可以作为饮食干预以多种方式参与调控机体脂质代谢。

富含RS的高粱食物能显著降低糖尿病患者的空腹血糖和体重指数,同时降低TC、LDL-C和TG的水平[29]。李涛等[30]发现,紫山药RS可有效减轻高脂血症金黄地鼠内脏的脂肪质量,调节血脂指标,改善肠道菌群的失衡,进而缓解肝脏脂肪病变。

胆汁酸维持体内脂质代谢平衡,胆固醇是合成初级胆汁酸的原料。初级胆汁酸在肠道转化为次级胆汁酸,然后大部分胆汁酸被肝脏重吸收利用,这一过程被称为胆汁酸循环。研究[31-33]表明,RS可以通过调节肠道菌群的组成,改变机体循环胆汁酸的组成和代谢,促进胆固醇的分解形成胆汁酸,从而调节血脂。Lei等[34]发现,莲子RS减缓了高脂血症大鼠体重增加和肝指数升高,缓解了脂肪肝症状,抑制了肝脏对次级胆汁酸的重吸收,影响胆汁酸循环。Aribas等[35]研究发现,RS结合了高血脂症大鼠中的次级胆汁酸,并促进其在粪便中排泄,从而改善了高脂血症大鼠的血脂代谢。此外,Liu等[36]报道,莲子RS和乳酸钠复合物通过多种代谢途径如亚油酸代谢、鞘脂代谢和甘油磷脂代谢等,协同调节高脂血症大鼠血清氨基酸、磷脂和有机酸水平,从而改善血脂水平,降低脂肪肝疾病的风险。

RS饮食干预能通过发酵产生的SCFAs激活腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)的活性,进而显著抑制肝脏中固醇调节元件结合蛋白(sterol regulatory element binding peptide-1,SREBP-1)的表达水平,激活下游过氧化物酶体增殖物激活受体α(peroxisome proliferator activated receptor α,PPARα),进而增强胰岛素诱导基因1(insulin inducible gene-1,Insig-1)与胰岛素诱导基因2(insulin inducible gene-2, Insig-2)的表达,抑制脂肪酸合成酶(fatty acid synthetase,FAS)与乙酰辅酶A羧化酶(acetyl coenzyme A carboxylase,ACC)等的表达,从而抑制脂质的积累和游离脂肪酸的合成[37-39]。Shang等[40]报道,在肥胖小鼠高脂饲料中添加RS与低聚果糖复合物,可以富集PPARα信号通路,上调胆固醇7α-羟化酶(cholesterol 7α hydroxylase,CYP7A1)基因表达,促使胆固醇加速转化为胆汁酸。Xu等[41]研究发现,RS能提高肥胖大鼠体内抗氧化酶活性,改善肝脏脂代谢酶活性,同时显著下调SREBP-1和胆固醇合成基因3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutarylcoenzyme A reductase,HMGCR)的表达,上调脂质氧化基因过氧化物酶体酰基辅酶A氧化酶(peroxisomal acyl-coenzyme A oxidase,ACOX)与肝功能基因的表达。这些改变增强了脂质分解代谢,抑制了脂质的合成代谢,有效预防和缓解高脂血症等脂质代谢异常疾病,如图1所示。

2.3 抗性淀粉与糖尿病

根据国际糖尿病联盟(IDF)的统计,2021年全球20~79岁糖尿病患病人数约为5.366亿人,预计到2045年将上升至约7.832亿人[42]。糖尿病是目前最严重和最常见的慢性疾病之一,饮食治疗是其最为基础的治疗方法。

普通的食用淀粉在消化过程中会迅速转化为葡萄糖,导致血糖急剧上升。RS具有低GI值和热值,可以提高饱腹感,并延缓餐后血糖的上升,从而有效缓解和控制糖尿病患者的病情[43-44]。王蕾蕾等[45]发现相比于普通大米,食用高RS的大米能够降低糖尿病患者餐后2 h血糖水平和空腹血糖水平。Strozyk等[46]发现,通过冷却米饭产生的RS可以缩短1型糖尿病患者血糖达到峰值的时间,减少餐后血糖的增加,延迟的血糖峰值的出现,表明RS对血糖控制有益,可能更好地与短效胰岛素类似物的最高活性相匹配。

研究[47]发现,与表面光滑的圆粒豌豆相比,表面带褶皱的自然变异豌豆含有更多的RS,直接食用这种褶皱豌豆或以面粉的形式加入到食物中,能显著降低血糖,减轻胰岛素抵抗,降低患2型糖尿病的风险。Bindels等[48]报道,RS可以独立于肠道菌群改善胰岛素敏感性,降低无菌和常规小鼠中脂肪组织巨噬细胞标志物的基因表达。Karimi等[49]研究发现,2型糖尿病患者补充RS2可以显著降低糖化血红蛋白(glycated hemoglobin,HbA1c)和内毒素水平,降低餐后血糖和胰岛素反应。RS发酵产物SCFAs能与G蛋白偶联受体(G-protein coupled receptors,GPRs)GPCR41/43相互作用,诱导肠道产生胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)和肠肽YY(peptides YY,PYY)等肠道激素,降低机体的體脂肪含量,提高胰岛素敏感性,并保护胰腺β细胞的功能[50-52]。

RS主要通过调节胰岛素信号转导的磷脂酰肌醇-3-激酶/蛋白激酶B信号途径(phosphatidylinositol-3-kinase/protein kinase B,PI3K/ Akt),调节下游底物受体和糖原合成相关酶的表达,从而调控血糖。具体而言,RS可以降低磷酸烯醇丙酮酸羧化激酶(phosphoenolpyruvate carboxy kinase,PEPCK)和葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pase)的表达,抑制糖原异生的过程[53-54]。糖尿病模型大鼠摄入RS后,与糖原合成相关基因的表达上调,如糖原蛋白1(glycogenin 1,GYG1)和糖原合酶2(glycogen synthesis 2,GS2),而与糖异生相关基因的表达下调[37]。此外,还有研究[55-57]观察到,摄入RS后胰腺十二指肠同源异型盒因子-1(pancreas/duodenum homeobox-1,PDX-1)、葡萄糖激酶(glucokinase,GK)、葡萄糖转运蛋白2(glucose transporter 2,GLUT2)以及胰岛素受体底物1(insulin receptor substrate 1,IRS1)和2(insulin receptor substrate 2,IRS2)的表达上调,改善了胰岛素的敏感性。总之,RS可以改善与胰岛素分泌和血糖信号传递相关基因的表达,调节糖代谢,有助于缓解糖尿病症状,如图2所示。

2.4 抗性淀粉与体重、肥胖控制

当摄入的热量高于消耗的热量时,会造成脂肪堆积,进而引起体重增加并导致肥胖。现有研究[58-59]表明,RS具有促进脂质排出、延长饱腹感和减少热量摄入的作用,从而有助于体重管理和减肥。Huang等[60]研究发现,与RS4和RS2相比,RS3具有更强的饱腹感效果,饱腹感与RS的溶胀能力呈正相关。胃中形成的RS凝胶可以导致胃持续扩张和胃排空延迟,从而通过减少食物摄入量、增加能量消耗等机制控制体重。经过物化特性的优化,RS壳寡糖复合物对高脂饮食大鼠具有减肥和降脂作用[61]。

厚壁菌门(Firmicutes)与拟杆菌门(Bacteroidetes)的比值称为F/B值,据报道[62],较高F/B值与肥胖风险增加有关。膳食中RS水平的增加导致肥胖相关菌种丰度下降,降低F/B值,并恢复了瘦素敏感性,减缓脂肪组织重量和脂肪细胞大小的增加[63]。另有研究[64]表明,RS能上调血管生成素样蛋白(angiopoietin-like protein 4,ANGPTL4)的表达,从而抑制胰脂肪酶的生成,显著降低超重和肥胖受试者的体重和体脂,并改善腹内和皮下脂肪面积。

2.5 抗性淀粉的其他生理功能

除了上述的防病保健功能之外,RS还具有其他众多生理活性功能。RS在结肠的发酵产生大量的SCFAs,对肠细胞起营养作用,并降低肠道内的pH值,这增加了矿物质的溶解度,提高了钙、铁、镁等矿物质吸收利用[65-66]。Correa等[67]研究发现,摄入RS的大鼠,其骨矿物质和骨密度相关的标志物增加,这有助于维持骨骼的健康。此外,RS可加速卵巢切除小鼠盲肠中的发酵过程,降低破骨细胞因子RANKL的表达,从而缓解骨质流失[68]。研究人员[69-70]还发现,将RS加入到口服补液盐(oral rehydration salt,ORS)中,能增强钠的吸收,减少排泄物中液体的流失,提高ORS对急性腹泻的疗效。莲子RS的饮食干预通过改善辅助性T细胞Th1/Th2失衡,降低卵清蛋白特异性免疫球蛋白和过敏相关细胞因子的血清浓度,从而缓解卵清蛋白诱导的食物过敏小鼠的不良症状[71]。相比可消化淀粉,RS可以减少胆固醇的合成来降低胆结石的发生率[72]。高RS饮食可以通过多种机制缓解慢性肾病症状,包括显著降低慢性肾病大鼠的血清尿素和肌酐水平,减轻炎症的程度等[73]。此外,Esgalhado等[74]报道,慢性肾病患者补充富含RS2的饼干可以显著增加核因子E2相关因子2(nuclear factor erythroid E2 related factor 2,Nrf2)和醌氧化还原酶1(quinone oxidoreductase 1,NQO1)的表达,降低尿毒症毒素和炎症水平。

3 抗性淀粉的应用和发展前景

RS由于其潜在的生理功能、特殊的物理性质以及优良的加工性能,在食品、医药和保健品等领域发挥重要作用。

RS作为食品添加剂在食品工业中被广泛应用。RS可作为功能性纤维添加到面包等食品中,对其感官品质和质构产生积极影响,使消费者在享受美味食品的同时,获得健康和营养[75-76]。RS具有良好的黏度稳定性和流变特性,可以作为液体和固体饮料食品中的增稠剂使用,而不会影响其口感。添加羟丙基化淀粉这种RS4能够改善鱼糜制品的凝胶品质与蛋白构象[77]。此外,在油炸洋葱条中添加RS可以改善油炸洋葱条的含油量、硬度、断裂性和脆度等性能,而且不会显著改变感官属性[78]。

RS还可以应用于生物活性载体和生物降解食用包装膜的研发。采用以RS为壁材的微胶囊包埋技术可以建立食品中生物功能活性成分的靶向传递系统,有效解决生物功能活性物质在体内利用率低和稳定性差等问题[79]。直链淀粉-脂质复合物的含量对可食膜的物理、机械和阻隔特性有显著影响,可以用于调节可食膜特性[80]。此外,RS的开发利用还聚焦在以其为主要原料来开发高品质的功能性保健品和药品。

4 结论与展望

抗性淀粉作为一种药食两用的天然安全食品资源,具有优良的食品加工性能和重要的生理功能,对人体健康有益。同时,抗性淀粉还弥补了传统膳食纤维的不足之处,为功能食品研究开辟了新的方向,并具有重要的工业应用价值。因此,抗性淀粉的研究和应用具有广阔的前景和发展空间。研究已经证实抗性淀粉具有预防和缓解肠道疾病、高脂血症、糖尿病与肥胖症等疾癥的作用。随着研究手段的不断发展,越来越多关于抗性淀粉的健康益处将会被发现和关注。然而,抗性淀粉的防病保健效应缺乏标准化,受到抗性淀粉类型、来源、剂量和实验对象、设计等因素的影响。目前,已经有抗性淀粉相关产品上市,但是抗性淀粉的功能性、营养性、制备及构造、定量分析以及在食品和保健品中的应用等方面仍需深入、系统化的研究。因此,需要进一步研究抗性淀粉的分子结构和功能,确定其在机体内的作用机制,并制定抗性淀粉相关标准,以发挥其在日常膳食中的营养与保健功能。

参 考 文 献

[1] SILVA Y P, BERNARDI A, FROZZA R L. The role of shortchain fatty acids from gut microbiota in gut-brain communication[J]. Frontiers in Endocrinology, 2020,11:25.

[2] JIANG F, DU C W, JIANG W Q, et al. The preparation, formation, fermentability, and applications of resistant starch[J]. International Journal of Biological Macromolecules, 2020,150:1155-1161.

[3] HOMAYOUNI A, AMINI A, KESHTIBAN A K, et al. Resistant starch in food industry: a changing outlook for consumer and producer[J]. Starch-St?rke, 2014,66(1/2):102-114.

[4] ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992,46(Suppl 2):S33-S50.

[5] SAJILATA M G, SINGHAL R S, KULKARNI P R. Resistant starch-a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2006,5(1):1-17.

[6] LESZCZY?SKI W. Resistant starch-classification, structure, production[J]. Polish Journal of Food and Nutrition Sciences, 2004,13(54):37-50.

[7] 馮铄涵,阚建全.压热酸解法制备玉米抗性淀粉的工艺优化[J].粮食科技与经济,2011,36(6):38-42.

[8] 万成,李涛,刘灿灿,等.辛烯基琥珀酸酐改性淀粉的研究进展[J].粮食科技与经济,2017,42(6):73-76.

[9] LI L, LIU Z D, ZHANG W H, et al. Production and applications of amylose-lipid complexes as resistant starch: recent approaches[J]. Starch-St?rke, 2021,73(5/6):2000249.

[10] BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: promise for improving human health[J]. Advances in Nutrition, 2013,4(6):587-601.

[11] VANHOUTVIN S A, TROOST F J, HAMER H M, et al. Butyrate-induced transcriptional changes in human colonic mucosa[J]. PloS One, 2009,4(8):e6759.

[12] HUMPHREYS K J, CONLON M A, YOUNG G P, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial[J]. Cancer Prevention Research, 2014,7(8):786-795.

[13] VANAMALA J K P. Potatoes for targeting colon cancer stem cells[J]. American Journal of Potato Research, 2019,96(2):177-182.

[14] NELSON B, CRAY N, AI Y, et al. Effect of dietary-resistant starch on inhibition of colonic preneoplasia and Wnt signaling in azoxymethane-induced rodent models[J]. Nutrition and Cancer, 2016,68(6):1052-1063.

[15] WUTZKE K D, TISZTL M, SALEWSKI B, et al. Dietary fibre-rich resistant starches promote ammonia detoxification in the human colon as measured by lactose-[15N2] ureide[J]. Isotopes in Environmental and Health Studies, 2015,51(4):488-496.

[16] BAJKA B H, CLARKE J M, COBIAC L, et al. Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats[J]. Carcinogenesis, 2008,29(11):2169-2174.

[17] NAVARRO S D, MAURO M O, PESARINI J R, et al. Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis[J]. Genetics and Molecular Research, 2015,14(1):1679-1691.

[18] KOAY Y C, WALI J A, LUK A W S, et al. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites[J]. The Faseb Journal, 2019,33(7):8033-8042.

[19] 梁单.马铃薯抗性淀粉调节肠道菌群及改善肥胖的作用机制[D].北京:中国农业科学院,2021:39-56.

[20] LI X, CHEN W, GAO J Y, et al. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation[J]. Food Hydrocolloids, 2023,139:108501.

[21] LI Z T, HU G A, ZHU L, et al. In vitro digestion and fecal fermentation of highly resistant starch rice and its effect on the gut microbiota[J]. Food Chemistry, 2021,361:130095.

[22] AFIFAH D N, PURNAMASARI F, KHUSNA L, et al. Musa balbisiana and Musa paradisiaca starches increase SCFA and Caspase-3 as well as decrease β-glucuronidase and MDA of mouse model for colon cancer[J]. The Indonesian Biomedical Journal, 2021,13(1):91-96.

[23] YUAN H B, ZHU X P, CHEN D Y, et al. Effects of dual modified resistant indica rice starch on azoxymethane-induced incipient colon cancer in mice[J]. Experimental and Therapeutic Medicine, 2017,13(5):2036-2042.

[24] WANG Q Y, WANG P, XIAO Z G. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway[J]. International Journal of Molecular Medicine, 2018,41(4):1887-1898.

[25] VALCHEVA R, HOTTE N, GILLEVET P, et al. Soluble dextrin fibers alter the intestinal microbiota and reduce proinflammatory cytokine secretion in male IL-10 deficient mice[J]. The Journal of Nutrition, 2015,145(9):2060-2066.

[26] HARTOG A, BELLE F N, BASTIAANS J, et al. A potential role for regulatory T-cells in the amelioration of DSS induced colitis by dietary non-digestible polysaccharides[J]. The Journal of Nutritional Biochemistry, 2015,26(3):227-233.

[27] SHRIVASTAVA A K, THAPA S, SHRESTHA L, et al. Phytochemical screening and the effect of Trichosanthes dioica in high‐fat diet induced atherosclerosis in Wistar rats[J]. Food Frontiers, 2021,2(4):527-536.

[28] LI W Y, YANG C Y, MEI X, et al. Effect of the polyphenol‐rich extract from Allium cepa on hyperlipidemic sprague‐dawley rats[J]. Journal of Food Biochemistry, 2021,45(1):e13565.

[29] HYMAVATHI T V, JYOTHSNA E, ROBERT T P, et al. Effect of resistant starch (RS) rich sorghum food consumption on lipids and glucose levels of diabetic subjects[J]. Journal of Pharmaceutical Research International, 2020,32:86-92.

[30] 李濤,宋洪波,安凤平,等.紫山药抗性淀粉调节高脂血症金黄地鼠脂质代谢[J].中国食品学报,2021,21(3):95-101.

[31] DHAKAL S, DEY M. Resistant starch type-4 intake alters circulating bile acids in human subjects[J]. Frontiers in Nutrition, 2022,9:930414.

[32] LEI S Z, HE S Q, LI X, et al. Effect of lotus seed resistant starch on small intestinal flora and bile acids in hyperlipidemic rats[J]. Food Chemistry, 2023,404:134599.

[33] ZENG H L, HE S Q, XIONG Z X, et al. Gut microbiota-metabolic axis insight into the hyperlipidemic effect of lotus seed resistant starch in hyperlipidemic mice[J]. Carbohydrate Polymers, 2023,314:120939.

[34] LEI S Z, LIU L, YUE P Y, et al. Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats[J]. Journal of Functional Foods, 2022,92:105040.

[35] ARIBAS M, KAHRAMAN K, KOKSEL H. In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran[J]. Journal of Functional Foods, 2020,65:103778.

[36] LIU L, LIN Y J, LEI S Z, et al. Synergistic effects of lotus seed resistant starch and sodium lactate on hypolipidemic function and serum nontargeted metabolites in hyperlipidemic rats[J]. Journal of Agricultural and Food Chemistry, 2021,69(48):14580-14592.

[37] ZHOU Z K, WANG F, REN X C, et al. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats[J]. International Journal of Biological Macromolecules, 2015,75:316-321.

[38] SHANG W T, SI X, STRAPPE P, et al. Resistant starch attenuates impaired lipid biosynthesis induced by dietary oxidized oil via activation of insulin signaling pathways[J]. Rsc Advances, 2017,7(80):50772-50780.

[39] CHANG D N, HU X Z, MA Z. Pea-resistant starch with different multi-scale structural features attenuates the obesity-related physiological changes in high-fat diet mice[J]. Journal of Agricultural and Food Chemistry, 2022,70(36):11377-11390.

[40] SHANG W T, SI X, ZHOU Z K, et al. Studies on the unique properties of resistant starch and chito-oligosaccharide complexes for reducing high-fat diet-induced obesity and dyslipidemia in rats[J]. Journal of Functional Foods, 2017,38:20-27.

[41] XU S, ZHOU Z K, STRAPPE P, et al. A comparison of RS4-type resistant starch to RS2-type resistant starch in suppressing oxidative stress in high-fat-diet-induced obese rats[J]. Food & Function, 2017,8(1):232-240.

[42] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2022,183:109119.

[43] RANHOTRA G S, GELROTH J A, GLASER B K. Energy value of resistant starch[J]. Journal of Food Science, 1996,61(2):453-455.

[44] 徐丹鴻,徐红华.抗性淀粉的制备及其形成影响因素的研究[J].粮食科技与经济,2006(1):50-51.

[45] 王蕾蕾,何芳,樊慧茹,等.高抗性淀粉大米血糖生成指数测定及对糖尿病患者血糖调控的干预研究[J].营养学报,2017,39(2):197-199.

[46] STROZYK S, ROGOWICZ-FRONTCZAK A, PILACINSKI S, et al. Influence of resistant starch resulting from the cooling of rice on postprandial glycemia in type 1 diabetes[J]. Nutrition & Diabetes, 2022,12(1):21.

[47] PETROPOULOU K, SALT L J, EDWARDS C H, et al. A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans[J]. Nature Food, 2020,1(11):693-704.

[48] BINDELS L B, SEGURA M R, GOMES-NETO J C, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota[J]. Microbiome, 2017,5(1):12.

[49] KARIMI P, FARHANGI M A, SARMADI B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial[J]. Annals of Nutrition and Metabolism, 2016,68(2):85-93.

[50] ZHOU J, MARTIN R J, RAGGIO A M, et al. The importance of GLP-1 and PYY in resistant starchs effect on body fat in mice[J]. Molecular Nutrition & Food Research, 2015,59(5):1000-1003.

[51] NILSSON A C, JOHANSSON-BOLL E V, BJ?RCK I M E. Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects[J]. British Journal of Nutrition, 2015,114(6):899-907.

[52] HU Y M, LI C, HOU Y Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review[J]. Food & Function, 2021,12(22):11154-11164.

[53] SONG X Q, DONG H H, ZANG Z Z, et al. Kudzu resistant starch: an effective regulator of type 2 diabetes mellitus[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:1-15.

[54] SAKAKIBARA S, YAMAUCHI T, OSHIMA Y, et al. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice[J]. Biochemical and Biophysical Research Communications, 2006,344(2):597-604.

[55] SUN H, MA X H, ZHANG S Q, et al. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats[J]. International Journal of Biological Macromolecules, 2018,110:276-284.

[56] YANG J, BI Y, LIANG S Y, et al. The in vivo digestibility study of banana flour with high content of resistant starch at different ripening stages[J]. Food & Function, 2020,11(12):10945-10953.

[57] WANG Q, ZHENG Y F, ZHUANG W J, et al. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry, 2018,264:427-434.

[58] ZHANG L, LI H T, LI S, et al. Effect of dietary resistant starch on prevention and treatment of obesity-related diseases and its possible mechanisms[J]. Biomedical and Environmental Sciences, 2015,28(4):291-297.

[59] 杨参,阚建全,陈宗道,等.抗性淀粉及其生理功能研究新進展[J].粮食科技与经济,2003(3):41-42.

[60] HUANG J T, CHANG R R, MA R R, et al. Effects of structure and physical chemistry of resistant starch on short-term satiety[J]. Food Hydrocolloids, 2022,132:107828.

[61] 周中凯,王俊轩,李莹.抗性淀粉、壳寡糖及其复合物对高脂饮食大鼠糖脂代谢影响[J].食品研究与开发,2017,38(6):189-193.

[62] LIU J, LI Y F, YANG P Y, et al. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2017,65(42):9237-9246.

[63] 万佳玮.不同抗性淀粉含量的大米对高脂饮食小鼠脂质代谢和肠道菌群的调控研究[D].武汉:华中农业大学,2020:64-97.

[64] 张蕾.抗性淀粉对肥胖的干预效果和分子机制研究[D].上海:上海交通大学,2019:41-66.

[65] ALEXANDER C, SWANSON K S, FAHEY G C, et al. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation[J]. Advances in Nutrition, 2019,10(4):576-589.

[66] ZENG H L, HUANG C C, LIN S, et al. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice[J]. Journal of Agricultural and Food Chemistry, 2017,65(42):9217-9225.

[67] CORREA M J, GIANNUZZI L, WEISSTAUB A R, et al. Chemically modified resistant starch in breadmaking: impact on bone, mineral metabolism and gut health of growing Wistar rats[J]. International Journal of Food Science & Technology, 2019,55(1):239-247.

[68] TOUSEN Y, MATSUMOTO Y, NAGAHATA Y, et al. Resistant starch attenuates bone loss in ovariectomised mice by regulating the intestinal microbiota and bone-marrow inflammation[J]. Nutrients, 2019,11(2):297.

[69] RAMAKRISHNA B S, SUBRAMANIAN V, MOHAN V, et al. A randomized controlled trial of glucose versus amylase resistant starch hypo-osmolar oral rehydration solution for adult acute dehydrating diarrhea[J]. PloS One, 2008,3(2):e1587.

[70] BINDER H J. Role of colonic short-chain fatty acid transport in diarrhea[J]. Annual Review of Physiology, 2010,72(1):297-313.

[71] HU J M, LIN Z J, LI L X, et al. Oral administration of lotus-seed resistant starch protects against food allergy[J]. Foods, 2023,12(4):737.

[72] RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: a review[J]. Journal of the Science of Food and Agriculture, 2015,95(10):1968-1978.

[73] VAZIRI N D, LIU S M, LAU W L, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease[J]. PloS One, 2014,9(12):e114881.

[74] ESGALHADO M, KEMP J A, de PAIVA B R, et al. Resistant starch type-2 enriched cookies modulate uremic toxins and inflammation in hemodialysis patients: a randomized, double-blind, crossover and placebo-controlled trial[J]. Food & Function, 2020,11(3):2617-2625.

[75] AMINI KHOOZANI A, KEBEDE B, BIRCH J, et al. The effect of bread fortification with whole green banana flour on its physicochemical, nutritional and in vitro digestibility[J]. Foods, 2020,9(2):152.

[76] 葉彩珠.功能性稻米无糖苏打饼干制作的研究[J].粮食科技与经济,2020,45(12):115-117.

[77] 米红波,王聪,苏情,等.变性淀粉对白鲢鱼鱼糜凝胶特性和蛋白构象的影响[J].中国食品学报,2021,21(1):72-80.

[78] BOUE S M, CHEN M H, DAIGLE K W, et al. Changes in fried rice batter with increased resistant starch and effects on sensory quality of battered fried onions[J]. Cereal Chemistry, 2022,99(3):454-466.

[79] 黄雅萍,叶景芬,邓凯波,等.抗性淀粉用于微胶囊制备的研究进展[J].食品研究与开发,2019,40(7):218-224.

[80] THAKUR R, PRISTIJONO P, GOLDING J B, et al. Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- ι -carrageenan biodegradable edible film[J]. Food Packaging and Shelf Life, 2017,14:108-115.

猜你喜欢

代谢保健
《中老年保健》健康知识问答2022(一)
《中老年保健》健康知识问答2021(三)
《中老年保健》健康知识问答2021(二)
《中老年保健》健康知识问答2021(一)
《中老年保健》2020年历
UPLC—ESI—Q—TOF—MS/MS分析槲皮苷在大鼠
色素上皮衍生因子与胰岛素抵抗的相关性
玉女煎治疗消渴胃热炽盛证的研究进展
护理干预对多囊卵巢综合征患者体重和代谢的影响
辟谷的实质及其在减肥中的意义