一类非齐次椭圆方程组非常弱解的正则性
2023-01-17陈淑红
陈淑红
一类非齐次椭圆方程组非常弱解的正则性
陈淑红
(武夷学院 数学与计算机学院,福建 武夷山 354300)
研究一类非齐次项是-Laplace算子的椭圆方程组非常弱解的正则性。结合Hodge分解以及偏微分方程正则性理论的证明技巧,建立了具有-Laplace型椭圆方程组的非常弱解与经典意义下的弱解之间的关系。
-Laplace型;非常弱解; Hodge分解;正则性
0 引言
考虑一类非齐次项具有-Laplace算子的椭圆方程组
本文主要研究非齐次椭圆方程组(式(1))非常弱解的正则性。在著名数学家Hilbert于1904年提出的20个公开问题中,涉及解的正则性问题的就有2个,可见正则性研究的重要性,因此也吸引了研究者的广泛关注和探索,并取得了丰硕的成果[1-5]。
正则性理论的研究大多是在方程(组)存在弱解的情况下进行的,然而,很多具体形式、特定形式的方程(组)在已有研究方法下尚无法获得经典意义上的弱解,如具有奇异对流的方程组[6]、具有-Laplace型非齐次项的椭圆方程[7]等。
解的存在性仍然是一个悬而未决的问题。
幸运的是,1992年,IWANIEC[9]偶然发现在广义积分意义下,解的可积性指标在一定程度上可低于自然增长指标,由此提出了在经典意义下的弱解,即在更广泛的空间内定义方程弱解,并将其定义为非常弱解。
1 基本引理
2 正则性证明
令
由引理3,可得
由式(9)和式(11),可推得
代入式(13),得
由式(2)和式(3),得
由引理2和等式(10),可以发现
其中,
由式(10)、Young不等式以及Poincare不等式,有
再利用Young不等式和Poincare不等式,可得
重复上述过程,则由引理4,可得定理1成立。
推论1获证。
[1] BECK L. Partial regularity for weak solutions of nonlinear elliptic systems: The subquadratic case[J]. Manuscripta Mathematica, 2007, 123: 453-491. DOI:10.1007/s00229-007-0100-8
[2] ARAMAKI J. Regularity of weak solutions for degenerate quasilinear elliptic equations involving operator curl[J]. Journal of Mathematical Analysis and Applications, 2015, 426(2): 872-892. DOI:10. 1016/J.JMAA.2015.02.001
[3] LIU Q. Regularity of weak solutions and the number of singular points to the 3D simplified nematic liquid crystal system[J]. Journal of Functional Analysis, 2019, 277(12), 108294.
[4] OK J. Partial Hölder regularity for elliptic systems with non-standard growth[J]. Journal of Functional Analysis, 2018, 274(3): 723-768. DOI:10.1016/j.jfa.2017.11.014
[5] KIM H. Existence and regularity of very weak solutions of the stationary Navier-Stokes equations[J]. Archive for Rational Mechanics and Analysis, 2009, 193(1): 117-152. DOI:10.1007/s00205-008-0168-7
[6] GRECO L, MOSCARIELLO G, ZECCA G, et al. Very weak solutions to elliptic equations with singular convection term[J]. Journal of Mathematical Analysis and Applications, 2018, 457(2): 1376-1387. DOI:10.1016/j.jmaa.2017.03.025
[7] BULÍČEK M, SCHWARZACHER S. Existence of very weak solutions to elliptic systems of-Laplacian type[J]. Calculus of Variations and Partial Differential Equations, 2016, 55(52). DOI:10. 1007/s00526-016-0986-7
[8] BÉNILAN P, BOCCARDO L, GALLOUËT T, et al. An1-theory of existence and uniqueness of solutions of nonlinear elliptic equations[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1995, 22(2): 241-273.
[9] IWANIEC T.-harmonic tensors and quasiregular mappings[J]. Annals of Mathematics, 1992, 136(3): 589-624. DOI:10.2307/2946602
[10]IWANIEC T, SBORDONE C. Weak minima of variational integrals[J]. Journal für die Reine und Angewandte Mathematik, 1994, 454: 143-161. DOI:10.1515/crll.1994.454.143
[11]IWANIEC T, MIGLIACCIO L, NANIA L. Integrability and removability results for quasiregular mappings in high dimensions[J]. Mathematica Scandinavica, 1994, 75(2): 263-279. DOI:10.7146/MATH.SCAND.A-12519
[12]MEYERS N, ELCRAT A. Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions[J]. Duke Mathematical Journal, 1975, 42(1): 121-136. DOI:10.1215/S0012-7094-75-04211-8
Regularity of very weak solutions for a class of inhomogeneous elliptic equations
CHEN Shuhong
(,,354300,,)
In this paper, we study the regularity theory of very weak solutions for a class of elliptic equations which inhomogeneous terms are-Laplace operators. Combining Hodge decomposition and the regularity theory of partial differential equations, the relation between the very weak solution of-Laplacian elliptic equations and the weak solution in the classical sense is established.
-Laplace type; very weak solution; Hodge decomposition; regularity
O 175.2
A
1008⁃9497(2023)01⁃025⁃05
2021⁃09⁃09.
国家自然科学基金资助项目(11571159);武夷学院引进人才科研启动项目(YJ202118).
陈淑红(1979—),ORCID:https://orcid.org/0000-0001-6648-6486,女,博士(后),教授,主要从事偏微分方程研究,E-mail:shiny0320@163.com.