非编码RNA在软骨细胞衰老中作用机制的研究进展*
2022-10-13胡玲慧李慧吴伟
胡玲慧, 李慧, 吴伟
非编码RNA在软骨细胞衰老中作用机制的研究进展*
胡玲慧, 李慧, 吴伟△
(上海体育学院,上海 200438)
非编码RNA;软骨细胞;细胞衰老;膝骨关节炎
细胞衰老较为广泛,主要是指细胞永久性生长阻滞、凋亡抵抗和衰老相关分泌表型(senescence-associated secretory phenotype, SASP)的产生,导致不再进入细胞周期[1]。研究表明,膝骨关节炎(knee osteoarthritis, KOA)的发生率与年龄密切相关,年龄增长造成的软骨细胞衰老也是KOA发病主要机制之一[2]。此外,一些损伤或应激造成的炎症环境和氧化应激状态都可以加速软骨细胞衰老,最终导致软骨磨损、退化等,发展成为KOA[3]。因此,软骨细胞衰老机制在KOA的研究中具有重要意义,如何抗衰老将对KOA的治疗具有重大指导价值。
1 软骨细胞衰老机制
端粒缩短是细胞衰老主要标志,shelterin复合体是端粒结合蛋白的核心成分,在调控端粒长度、结构和功能方面具有重要作用。端粒缩短会造成shelterin失稳,破坏DNA损伤反应的抑制作用,导致细胞周期从G1(DNA合成前期)进入G0期(暂时离开细胞周期和停止细胞分裂)。DNA损伤会引起细胞分裂、凋亡和衰老等反应,当这种损伤持续发生时,DNA损伤应答时间延长,导致细胞衰老,增殖周期停滞。核纤层蛋白(lamin)可以诱导DNA损伤,其中lamin B1是细胞衰老的关键指标。一些应激造成的氧化应激状态,活性氧(reactive oxygen species, ROS)水平上升,过量ROS会引起细胞损伤,细胞抗氧化能力下降,最终促进SASP产生,加速细胞衰老。此外,炎性环境也可以加快细胞衰老的速率。病理炎性环境下可以诱发KOA,白细胞介素(interleukin, IL)和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)等促炎因子会加速细胞衰老[4]。
2 软骨细胞衰老相关指标
衰老相关β-半乳糖甘酶(senescence-associated β-galactosidase, SA-β-Gal),细胞衰老最为显著指标。Zhu等[5]研究中发现,IL-1β诱导的软骨细胞中,SA-β-Gal表达显著升高。Tian等[6]发现,骨关节炎患者的软骨细胞中,SA-β-Gal表达也升高。细胞衰老周期抑制调节因子p16INK4A和p21可以抑制细胞周期蛋白依赖性激酶(cyclin-dependent kinase, CDK),引起细胞周期停滞和衰老。p53表达可以促使细胞生长停滞、凋亡,也可以促进p21表达。p16INK4A/Rb和p53/p21通路是较为典型的细胞衰老相关通路,在细胞衰老中起到重要作用。多项研究已证实,p16INK4A、p21和p53表达可以诱导软骨细胞衰老、生长周期停滞[7-9]。
3 非编码RNA(non-coding RNAs, ncRNAs)调控
ncRNAs主要包括长链ncRNA(long ncRNAs, lncRNAs)、微小RNA(microRNAs, miRNAs)和环状RNA(circular RNAs, circRNAs);lncRNAs和circRNAs对miRNAs具有吸附作用,可通过lncRNA/miRNA和circRNA/miRNA途径对软骨细胞代谢产生影响[10]。软骨细胞内ncRNAs表达异常上调或下调,可影响软骨细胞的增殖、迁移和凋亡,从而影响KOA的发生和发展。ncRNAs正成为KOA中的研究热点及前沿。
目前有关ncRNAs在KOA软骨细胞衰老作用的研究并不多见。lncRNA-00623/miRNA-101、miRNA-140、miRNA-375、miRNA-34a和miRNA-146a被证实在KOA细胞衰老中起着重要作用[11-15]。本文主要从3种nRNAs对其他细胞衰老作用及机制进行总结分析,结合现有KOA研究,探讨其对于软骨细胞衰老相关作用的潜在机制。
3.1lncRNAslncRNAs是长度在200~100 000个核苷酸(nucleotide, nt)的ncRNAs,调节着几乎所有的生物进程,在细胞分化、凋亡中具有重要作用。
从表1可见,lncRNAs与细胞衰老的相关研究主要以心血管和骨骼系统居多,还涉及肝、肺和胃等脏器。在心肌细胞中lncRNA-H19可通过吸附miRNA-19α促进SA-β-Gal、p53和p21表达,加快心肌细胞衰老[16]。lncRNA-ES3可吸附miRNA-34c-5p,促进下游BMF(Bcl-2 modifying factor)和SA-β-Gal的表达,加速血管平滑肌细胞衰老[20]。在KOA中,lncRNA-00623可通过吸附miRNA-101促进HRAS(Harvey rat sarcoma viral oncogene homolog)表达,并通过丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路抑制软骨细胞凋亡、衰老和细胞外基质降解[11]。敲减lncRNA-SNHG6可以抑制胃癌细胞增殖,诱导其衰老;此过程中,c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)信号通路被激活,降低EZH2(enhancer of zeste homolog 2)表达,促进SA-β-Gal和p21表达[27]。lncRNA-TUG1在椎间盘变性(intervertebral disc degeneration, IDD)患者中高表达;TUG1-siRNA可以显著降低Wnt1、β-catenin、基质金属蛋白酶3(matrix metallopeptidase 3, MMP3)和ADAMTS5(a disintegrin and metalloproteinase with thrombospondin type 1 motif 5)表达,促进聚集蛋白聚糖(aggrecan)和II型胶原α1链(collagen type II alpha 1 chain, COL2A1)表达,抑制髓核细胞凋亡和衰老,促进其增殖[22]。MMP3和ADAMTS5是软骨细胞常见的降解因子,aggrecan和COL2A1是软骨细胞常见的生成因子。因此,lncRNA-TUG1可能在软骨细胞衰老中同样发挥重要作用。
表1 lncRNAs对细胞衰老作用及机制
YAP: Yes-associated protein; Sirt1: silent information regulator 1; BMF: Bcl-2 modifying factor; JNK: c-Jun N-terminal kinase; SAHF: senescence-associated heterochromatin loci; NPC: nucleus pulposus cell; VSMC: vascular smooth muscle cells; AEC: alveolar epithelial cells; OGC: ovarian granulosa cells; CPC: cardiac progenitor cells; GCC: gastric cancer cells.
3.2miRNAsmiRNAs是长度在18~22 bp之间的单链ncRNAs,可特异性结合信使RNA(messenger RNA, mRNA)而起到抑制基因表达的作用。
从表2可见,关于miRNAs在细胞衰老中的作用机制有较多研究,其中miRNA-34a被证实可以促进内皮细胞、间充质干细胞、食管鳞状细胞癌细胞和髓核细胞等衰老。Wang等[28]发现,衰老内皮细胞中miRNA-217表达上调,过表达miRNA-217可通过Sirt1(silent information regulator 1, SIRT1; miRNA-217靶点)/p53轴促进SA-β-Gal表达,抑制内皮细胞增值、迁移和血管生成。Wen等[33]研究发现,30 μL无水乙醇注射小鼠尾部造成尾椎IDD模型后,通过骨髓间充质干细胞分泌的胞外囊泡(extracellular vesicles, EV)可抑制MMP2和MMP6等表达,促进miRNA-199a表达。体外EV干预后,aggrecan和SA-β-Gal表达下降,髓核细胞凋亡率下降。且miRNA-199a可靶向gremlin 1 [转化生长因子β(transforming growth factor-β, TGF-β)结合因子],下调TGF-β通路,促进IDD修复。这也提示,miRNA-199a可能在软骨细胞衰老中具有重要作用。
表2 miRNAs对细胞衰老作用及机制
PTEN: phosphatase and tensin homologue deleted on chromosome ten gene; DDR1: discoidin domain receptor 1; TGF-β: transforming growth factor-β; NF-κB: nuclear factor-κB; FOXO3a: forkhead box O3a; ZEB2: zinc finger E-box binding homeobox 2; AMPK: AMP-activated protein kinase; mTORC1: mammalian target of rapamycin 1; CNOT6: CCR4-NOT transcription complex subunit 6; VEC: vascular endothelial cell; HUVEC: human umbilical vein endothelial cell; MSC: mesenchymal stem cell; HGMC: human glomerular mesangial cell; HAMSC: human adipose tissue-derived mesenchymal stem cell; LCC: lung carcinoma cell; HSC: hepatic stellate cell; ESCC: human esophageal squamous cancer cell.
在KOA研究中,李兰等[12]发现,miRNA-140表达可以抑制早期KOA软骨细胞衰老,降低G0/G1期细胞比例和SA-β-Gal活性,减少p16INK4A、p21和p53表达。卓泽铭等[13]发现,桑寄生提取物可促进IL-1β诱导的软骨细胞活力和细胞周期蛋白D1(cyclin D1)表达水平,抑制软骨细胞凋亡和p21表达水平,过表达miRNA-375可以逆转桑寄生提取物的作用。Zhang等[14]的研究显示,KOA患者软骨中miRNA-34a表达增加;通过大鼠手术造模后,转染miRNA-34a可显著抑制DLL1(Delta-like 1; 干细胞更新、凋亡调节因子)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)和p-AKT表达,促进软骨细胞衰老和凋亡,DLL1过表达后提高了PI3K和p-AKT的表达水平,消除了miRNA-34a的作用,提示miRNA-34a可通过DLL1调节PI3K/AKT信号通路而加重KOA。Guan等[15]的研究显示,创伤后关节炎软骨细胞中miRNA-146a(炎症和机械应力相关因子)表达下降,过表达miRNA-146a对小鼠衰老软骨细胞具有抗性;其主要机制是通过抑制Notch信号通路(Notch1)减缓炎症因子IL-1β表达。
3.3circRNAscircRNAs主要存在于哺乳动物细胞的细胞质中,其特殊的环状结构具有高稳定性和灵敏性的特点,在体液中易被检测。circRNAs尾部磷酸二酯键3'和5'以共价键连接,形成了一个环状结构,这种结构非常稳定且能耐受RNA外切酶介导的降解,因此称为环状RNA。
从表3可见,circRNA在细胞衰老中作用研究相对较少。Ma等[51]发现,circRNA-ACTA2可以通过ILF3 (interleukin enhancer-binding factor 3)/CDK4促进血管平滑肌细胞衰老。Yu等[52]通过增加SA-β-Gal活性,增强CDK抑制物1A(CDK inhibitor 1A, CDKN1A)/p21和p53表达,可检测到circRNA-CCNB1表达下降,引发了成纤维细胞衰老。进一步研究发现降低circRNA-CCNB1可通过吸附miRNA-449a抑制CCNE2(cyclin E2)表达。靶向circ-CCNB1可能是一种有前景的衰老和年龄相关疾病干预策略。Zhou等[53]发现,circRNA-S7(ciRS-7)/miRNA-7(miR-7)在骨关节炎中表达异常。建立内侧半月板失稳大鼠骨关节炎模型后,上调ciRS-7/下调miR-7可以激活PI3K/AKT/mTOR信号通路改善软骨损伤和IL-1β诱导的软骨细胞降解与自噬缺陷。
表3 circRNAs对细胞衰老作用及机制
CCNE2: cyclin E2; ILF3: interleukin enhancer-binding factor 3; CDK4: cyclin-dependent kinase 4.
3.4信号通路及相关因子从上述表格的总结发现,ncRNAs对不同细胞衰老作用机制的研究中,很多途径的信号通路及因子与软骨细胞代谢有着密切关系。目前ncRNAs在细胞衰老作用机制的研究,主要涉及到了Wnt、JNK、AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)、核因子κB(nuclear factor-κB, NF‑κB)和TGF-β等信号通路。Wnt和JNK(MAPK主要信号通路之一)是软骨代谢中的经典通路之一,两者在软骨细胞分化增值和凋亡中起到重要作用。Wnt/β-catenin信号通路在软骨细胞早期分化增值,促进软骨形成中具有重要作用。JNK信号通路在关节损伤后的应激反应及软骨细胞凋亡具有重要作用,且反应强烈、迅速[54]。AMPK信号通路则可通过调控软骨细胞叉头框蛋白O3a(forkhead box O3a, FOXO3a)、NF-κB和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)等促进软骨细胞增殖[55]。TGF-β/Smad3信号通路可以促进II型胶原蛋白、aggrecan和SOX9(SRY-related high-mobility group box 9)等软骨细胞生成因子表达,有利于软骨形成[56]。Yes相关蛋白(Yes-associated protein, YAP)/Smad3信号通路可以下调大鼠KOA模型(改良Hulth法)软骨细胞促凋亡因子Bax表达,促进抗凋亡因子Bcl-2表达,从而促进软骨细胞增殖,抑制其凋亡,YAP还可作用于TGF-β/Smad3通路[57]。此外,Sirt1对软骨细胞具有一定的保护作用,Sirt1低表达与软骨细胞生物学异常、降解活性增加、生成活性降低、软骨细胞自噬和代谢紊乱具有重要关系[58]。
虽然目前3种主要ncRNAs对软骨细胞衰老作用的研究尚不多见,但是根据以上信息可以推测,ncRNAs很有可能通过Wnt/β-catenin、JNK、AMPK、NF‑κB、TGF-β等信号通路和YAP、Smad3、Sirt1等因子调控软骨细胞衰老,详见图1。
Figure 1. Potential mechanisms of three kinds of ncRNAs in chondrocyte senescence.
[1] Shmulevich R, Krizhanovsky V. Cell senescence, DNA damage, and metabolism[J]. Antioxid Redox Signal, 2021, 34(4):324-334.
[2] Salwana Kamsan S, Kaur Ajit Singh D, Pin Tan M, et al. Systematic review on the contents and parameters of self-management education programs in older adults with knee osteoarthritis[J]. Australas J Ageing, 2021, 40(1):e1-e12.
[3] Tudorachi NB, Totu EE, Fifere A, et al. The implication of reactive oxygen species and antioxidants in knee osteoarthritis[J]. Antioxidants (Basel), 2021, 10(6):985.
[4]时孝晴, 揭立士, 殷松江, 等. 软骨细胞衰老与骨关节炎的研究进展[J]. 医学研究生学报, 2021, 34(9):962-968.
Shi XQ, Jie LS, Yin SJ, et al. Research progress of chondrocyte senescence and osteoarthritis[J]. J Med Postgrad, 2021, 34(9):962-968.
[5] Zhu H, Yan X, Zhang M, et al. miR-21-5p protects IL-1β-induced human chondrocytes from degradation[J]. J Orthop Surg Res, 2019, 14(1):118.
[6] Tian J, Cheng C, Kuang SD, et al. OPN deficiency increases the severity of osteoarthritis associated with aberrant chondrocyte senescence and apoptosis and upregulates the expression of osteoarthritis-associated genes[J]. Pain Res Manag, 2020, 2020:3428587.
[7] Chung YP, Chen YW, Weng TI, et al. Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging[J]. Arch Toxicol, 2020, 94(1):89-101.
[8] Shao JH, Fu QW, Li LX, et al. Prx II reduces oxidative stress and cell senescence in chondrocytes by activating the p16-CDK4/6-pRb-E2F signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(7):3448-3458.
[9] Wang H, Zhu Z, Wu J, et al. Effect of type II diabetes-induced osteoarthritis on articular cartilage aging in rats: a studyand[J]. Exp Gerontol, 2021, 150:111354.
[10] Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6):194417.
[11] Lv G, Li L, Wang B, et al. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes[J]. Aging (Albany NY), 2020, 12(4):3218-3237.
[12] 李兰, 梁明玮, 陆燕蓉, 等. miR-140对早期骨关节炎软骨细胞衰老的调控作用及机制[J]. 中国矫形外科杂志, 2020, 28(3):252-259.
Li L, Liang MW, Lu YR, et al. Regulatory effect and mechanism of miR-140 on chondrocyte senescence in early-stage osteoarthritis[J]. Orthop J China, 2020, 28(3):252-259.
[13]卓泽铭, 范忠诚, 郭祥. 桑寄生提取物联合miR-375对骨关节炎软骨细胞活力和凋亡的影响[J]. 中国病理生理杂志, 2020, 36(6):1082-1088.
Zhuo ZM, Fan ZC, Guo X. Effect ofextracts combined with miR-375 on viability and apoptosis of osteoarthritic chondrocytes[J]. Chin J Pathophysiol, 2020, 36(6):1082-1088.
[14] Zhang W, Hsu P, Zhong B, et al. MiR-34a enhances chondrocyte apoptosis, senescence and facilitates development of osteoarthritis by targeting DLL1 and regulating PI3K/AKT pathway[J]. Cell Physiol Biochem, 2018, 48(3):1304-1316.
[15] Guan YJ, Li J, Yang X, et al. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism[J]. Aging Cell, 2018, 17(3):e12752.
[16] Zhuang Y, Li T, Xiao H, et al. LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/SOCS1/p53 axis[J]. Front Pharmacol, 2021, 12:631835.
[17] Yuan P, Qi X, Song A, et al. LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease[J]. J Cell Mol Med, 2021, 25(15):7354-7366.
[18] Liang D, Hong D, Tang F, et al. Upregulated lnc-HRK-2:1 prompts nucleus pulposus cell senescence in intervertebral disc degeneration[J]. Mol Med Rep, 2020, 22(6):5251-5261.
[19] Tan P, Guo YH, Zhan JK, et al. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1[J]. Biochem Cell Biol, 2019, 97(5):571-580.
[20] Lin X, Zhan JK, Zhong JY, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs[J]. Aging (Albany NY), 2019, 11(2):523-535.
[21] Yuan D, Liu Y, Li M, et al. Senescence associated long non-coding RNA 1 regulates cigarette smoke-induced senescence of type II alveolar epithelial cells through sirtuin-1 signaling[J]. J Int Med Res, 2021, 49(2):300060520986049.
[22] Chen J, Jia YS, Liu GZ, et al. Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2017, 491(3):668-674.
[23] Liu Q, Dong J, Li J, et al. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1[J]. Clin Transl Oncol, 2021, 23(6):1105-1116.
[24] Kim Y, Ji H, Cho E, et al. nc886, a non-coding RNA, is a new biomarker and epigenetic mediator of cellular senescence in fibroblasts[J]. Int J Mol Sci, 2021, 22(24):13673.
[25] Xiong Y, Liu T, Wang S, et al. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway[J]. Gene, 2017, 596:1-8.
[26] Cai B, Ma W, Bi C, et al. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit+cardiac progenitor cells by promoting miR-675[J]. J Pineal Res, 2016, 61(1):82-95.
[27] Li Y, Li D, Zhao M, et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells[J]. Life Sci, 2018, 208:295-304.
[28] Wang Z, Shi D, Zhang N, et al. MiR-217 promotes endothelial cell senescence through the SIRT1/p53 signaling pathway[J]. J Mol Histol, 2021, 52(2):257-267.
[29] Xiong Y, Xiong Y, Zhang H, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4+T cells by targeting the PTEN/PI3K-Nrf2 axis[J]. Front Immunol, 2021, 12:780897.
[30] Yan L, Xie X, Niu BX, et al. Involvement of miR-199a-3p/DDR1 in vascular endothelial cell senescence in diabetes[J]. Eur J Pharmacol, 2021, 908:174317.
[31] Yu L, Cao C, Li X, et al. Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer [J]. Oncogene. 2022; 41(1): 26-36.
[32] Guo Y, Xing L, Chen N, et al. Total flavonoids from theSarg. leaves inhibit HUVEC senescence through the miR-34a/SIRT1 pathway[J]. J Cell Biochem, 2019, 120(10):17240-17249.
[33] Wen T, Wang H, Li Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote the repair of intervertebral disc degeneration by transferring microRNA-199a[J]. Cell Cycle, 2021, 20(3):256-270.
[34] Lai XH, Lei Y, Yang J, et al. Effect of microRNA-34a/SIRT1/p53 signal pathway on notoginsenoside R₁ delaying vascular endothelial cell senescence[J]. Zhongguo Zhong Yao Za Zhi, 2018, 43(3):577-584.
[35] Chen Y, Wang S, Yang S, et al. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA-216a[J]. Mol Med Rep, 2021, 23(6):415.
[36] Zhang F, Gao F, Wang K, et al. MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway[J]. Stem Cell Res Ther, 2021, 12(1):115.
[37] Chen G, Zhou X, Li H, et al. Inhibited microRNA-494-5p promotes proliferation and suppresses senescence of nucleus pulposus cells in mice with intervertebral disc degeneration by elevating TIMP3[J]. Cell Cycle, 2021, 20(1):11-22.
[38] Cao D, Zhao M, Wan C, et al. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR-126/Akt-p53-p21 pathways[J]. Int Urol Nephrol, 2019, 51(6):1071-1078.
[39] Dong X, Hu X, Chen J, et al. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis[J]. Cell Death Dis, 2018, 9(2):203.
[40] Mokhberian N, Bolandi Z, Eftekhary M, et al. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1[J]. Life Sci, 2020, 257:118055.
[41] Tao W, Hong Y, He H, et al. MicroRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm[J]. J Cell Mol Med, 2021, 25(13):6056-6069.
[42] Choi JY, Shin HJ, Bae IH. miR-93-5p suppresses cellular senescence by directly targeting Bcl-w and p21[J]. Biochem Biophys Res Commun, 2018, 505(4):1134-1140.
[43] Shen Z, Xuan W, Wang H, et al. miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1):656-663.
[44] Shi L, Han Q, Hong Y, et al. Inhibition of miR-199a-5p rejuvenates aged mesenchymal stem cells derived from patients with idiopathic pulmonary fibrosis and improves their therapeutic efficacy in experimental pulmonary fibrosis[J]. Stem Cell Res Ther, 2021, 12(1):147.
[45] Khor ES, Wong PF. Endothelial replicative senescence delayed by the inhibition of mTORC1 signaling involves microRNA-107[J]. Int J Biochem Cell Biol, 2018, 101:64-73.
[46] Yang J, Lu Y, Yang P, et al. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2[J]. J Cell Physiol, 2019, 234(5):7587-7599.
[47] Dong C, Zhou Q, Fu T, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells [J]. Biomed Res Int, 2019, 2019:6071308.
[48] Zhou Y, Li GY, Ren JP, et al. Protection of CD4+T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway[J]. J Leukoc Biol, 2016, 100(5):1201-1211.
[49] Ye Z, Fang J, Dai S, et al. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background[J]. Cancer Lett, 2016, 370(2):216-221.
[50] Shang J, Yao Y, Fan X, et al. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways[J]. Biochim Biophys Acta, 2016, 1863(4):520-532.
[51] Ma Y, Zheng B, Zhang XH, et al. circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA[J]. Aging (Albany NY), 2021, 13(8):11610-11628.
[52] Yu AQ, Wang ZX, Wu W, et al. Circular RNA CircCCNB1 sponge microRNA-449a to inhibit cellular senescence by targeting CCNE2[J]. Aging (Albany NY), 2019, 11(22):10220-10241.
[53] Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis[J]. Aging (Albany NY), 2020, 12(20):20163-20183.
[54] 吴伟, 焦俊玥, 李慧, 等. 运动对软骨代谢影响的研究进展[J]. 中国骨质疏松杂志, 2018, 24(10):1384-1389.
Wu W, Jiao JY, Li H, et al. Research progression on the effect of exercise on chondrocyte metabolism[J]. Chin J Osteoporos, 2018, 24(10):1384-1389.
[55] 于辰曦, 孙水. AMPK在骨关节炎发生发展中的作用[J]. 生命的化学, 2016, 36(6):842-846.
Yu CX, Sun S. Research of AMPK on the progression of OA[J]. Chem Life, 2016, 36(6):842-846.
[56] 乔虎军, 王国祥, 郝鑫. 转化生长因子β/Smad信号通路和骨关节炎研究进展[J]. 中国运动医学杂志, 2019, 38(2):143-151.
Qiao HJ, Wang GX, Hao X. Research progression of TGFβ/Smad and osteoarthritis[J]. Chin J Sports Med, 2019, 38(2):143-151.
[57] 李宏军, 施源, 何敏, 等. 千草方熏洗对膝骨关节炎大鼠软骨YAP/Smad3表达的影响[J]. 中国病理生理杂志, 2019, 35(5):933-939.
Li HJ, Shi Y, He M, et al. Effects of Qiancaofang fumigation on expression of YAP/Smad3 in rats with knee osteoarthritis[J]. Chin J Pathophysiol, 2019, 35(5):933-939.
[58] Papageorgiou AA, Goutas A, Trachana V, et al. Dual role of SIRT1 in autophagy and lipid metabolism regulation in osteoarthritic chondrocytes[J]. Medicina (Kaunas), 2021, 57(11):1203.
Role of non-coding RNA in chondrocyte senescence
HU Ling-hui, LI Hui, WU Wei△
(,200438,)
Knee osteoarthritis (KOA) is closely related to aging, and it is of great significance to study the mechanism of KOA induced by aging. Non-coding RNAs are involved in most biological processes including aging. This review summarized the effects of three types of non-coding RNAs, including long non-coding RNAs, microRNAs and circular RNAs, on cellular senescence. The metabolic activities of chondrocytes and the potential mechanism of non-coding RNAs in chondrocyte senescence are also reviewed, providing some reference for the investigation of KOA.
Non-coding RNA; Chondrocytes; Cellular senescence; Knee osteoarthritis
1000-4718(2022)09-1702-07
2022-05-09
2022-07-28
15026701526; E-mail: 15026701526@126.com
R684; R363
A
10.3969/j.issn.1000-4718.2022.09.021
[基金项目]2021上海市青年科技英才扬帆计划(No. 21YF1445700);上海市运动与代谢健康前沿科学研究基地,2022年上海体育学院附属竞技体育学校教育教学课题中职内建设经费资助和上海市人类运动能力开发与保障重点实验室(上海体育学院)(No. 11DZ2261100)
(责任编辑:宋延君,罗森)