![](https://img.fx361.cc/images/2023/0227/809392e76f2cade55857be6e7f38349102603cb7.webp)
(A) 12 (B(-12 (C) 6 (D)-6
5.已知(1+2x)n的展开式中第4项与第6项的二项式系数相等,则(1+2x)n的展开式的各项系数之和为( )
(A) 38(B) 310(C) 28(D) 210
![](https://img.fx361.cc/images/2023/0227/66dd4c438a6ee0908f1bfebc3566f47e9ef57df1.webp)
(A)9 (B) 8 (C) 6 (D) 10
7.如图是长方体的展开图,且AD=2AB,ABFE为正方形,其中P,Q分别为AD,HI的中点.下列判断①AM∥CG,②AF∥DK,③BP∥JQ,④BP⊥QJ中,正确判断的个数为( )
(A)0 (B) 1 (C) 2 (D) 3
![](https://img.fx361.cc/images/2023/0227/db2c3c4b3f678b335e269fc820763ebf6d84e0a8.webp)
8.已知函数f(x)=xex-x-lnx+1-m有两个不同的零点,则实数m的取值范围是( )
(A) (-∞,1) (B) (-∞,2)
(C) (1,+∞) (D) (2,+∞)
二、多项选择题(本题共4小题,每小题5分,计20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)
9.下列命题中正确的有( )
![](https://img.fx361.cc/images/2023/0227/20c560d9ae25e663e7f59dce6db5fd3299502888.webp)
(B) 若复数z满足z2∈R,则z∈R
![](https://img.fx361.cc/images/2023/0227/fcdb42309e32a4954615362e85df7fcc4a8baa65.webp)
![](https://img.fx361.cc/images/2023/0227/31a74376635f58db4ba899997acf3c9bb97f9622.webp)
![](https://img.fx361.cc/images/2023/0227/eca43509206c4bf4b5bbf2c076fb2b2bea9d781e.webp)
(A) π是函数f(x)的一个周期
![](https://img.fx361.cc/images/2023/0227/56960695e886b1e3afd7cd852445dc87baf9671b.webp)
![](https://img.fx361.cc/images/2023/0227/bba2aeeea437a014ffbae20a7557650d8a865eb8.webp)
![](https://img.fx361.cc/images/2023/0227/57c8797d00f18d5ca4b41db9458c8cc88fb034db.webp)
11.已知正数a,b满足(a-1)b=1,则( )
(A)a+b≥3
(C) 2log2a+log2b≥2
(D)a2+b2>2a
![](https://img.fx361.cc/images/2023/0227/02c408c4ef94751347476088189f6ec8c2f210a9.webp)
(A)k1k2=-a2
![](https://img.fx361.cc/images/2023/0227/7b26c9f8f08264911236594d213cb4005cc3be21.webp)
(D)∆PAB的面积随k1的增大而减小
三、填空题(本大题共4小题,每小题5分,计20分)
13.已知直线l1:ax+2y-3=0与l2:3x+(1-a)y+4=0,若l1⊥l2,则实数a的值为______.
14.已知数列{an}的前n项和为Sn,a1=1,a2=2,an+2=an+1-an,则S2019=______.
![](https://img.fx361.cc/images/2023/0227/5492cc30cdafb23c8fa8be8f229c88f850ed609d.webp)
![](https://img.fx361.cc/images/2023/0227/fea166174223bab1e8d58b646ffd4a9a8160c3f3.webp)
![](https://img.fx361.cc/images/2023/0227/e0679e9e56b760d351b5eb329a36e1a5a67a2ec9.webp)
四、解答题(本大题共6小题,计70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分1分)已知盒中有形状大小都相同的3个黑球和10个白球,每次从中取1个球,取到黑球记1分,取到白球记2分,有放回地抽取3次,用随机变量ξ表示取3次所得的分数之和.试求:
(1)3次都取到黑球的概率;
(2)随机变量ξ的分布列.
18.(本小题满分12分)在①a1+a3=6,S9=81,②Sn=n2+k(k为常数)这二个条件中任选一个,补充在下面的问题中并解答.
问题:已知等差数列{an}的前n项和为Sn,且______.
(1)求数列{an}的通项公式;
![](https://img.fx361.cc/images/2023/0227/037a9df4f1bc3c46ef4a15fc7656bc4bec5ef1c3.webp)
19.(本小题满分12分)在平面四边形ABCD中,∠ABD=∠BCD=90°,∠DAB=45°.
(1)若AB=2,∠DBC=30°,求AC的长;
![](https://img.fx361.cc/images/2023/0227/1f6533b4de2dc715028c0f9246902a08433eedeb.webp)
![](https://img.fx361.cc/images/2023/0227/3547febf256562aecf7eeb09d002129ced998b9c.webp)
20.(本小题满分12分)给出两块相同的正三角形铁皮(如图1,图2).
(1)要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等.
① 请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
② 试比较你剪拼的正三棱锥与正三棱柱的体积的大小.
(2)设正三角形铁皮的边长为a,将正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图3),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?
![](https://img.fx361.cc/images/2023/0227/bf05482e101089773744cc291cfe6f8147f0f9e2.webp)
![](https://img.fx361.cc/images/2023/0227/28b1cfc221e5f46a0bcbf967b367d2749b8942fa.webp)
![](https://img.fx361.cc/images/2023/0227/5173f792ec6e117e34e4c64544af5e871ba7f3d3.webp)
(1)求椭圆C的方程;
![](https://img.fx361.cc/images/2023/0227/e8ab07f3812b59b61e8ba3ed5feb6d170af48907.webp)
![](https://img.fx361.cc/images/2023/0227/e093075fb6b61d0d9f1eba0f713702f94295d386.webp)
![](https://img.fx361.cc/images/2023/0227/08938ed1fa35d8961bf763178ac7d871255d01e8.webp)
(2)若f(x)有两个极值点x1,x2(x13.
参考答案
一、单项选择题
1. B;2. B;3. A;4. D;5. A;
6. A;7. C;8. D.
二、多项选择题
9. AD;10. ACD;
11. ACD;12. BCD.
三、填空题
13.-2;14.4;15.② ③ ④;
![](https://img.fx361.cc/images/2023/0227/ec26733483218f2cd76041f4ce36da6aafd9fe0d.webp)
四、解答题
![](https://img.fx361.cc/images/2023/0227/47c9f45c075152bbeeecf3bea5da2460664e081d.webp)
(2)ξ的取值是3,4,5,6.
![](https://img.fx361.cc/images/2023/0227/b35910c85ca09064344279a49edea32f9889d095.webp)
![](https://img.fx361.cc/images/2023/0227/779f9a529dee51a6671e00efb01a3ad6cee6ed27.webp)
ξ3456 P27642764964164
18.设等差数列{an}的公差为d,d>0.
选条件①:
![](https://img.fx361.cc/images/2023/0227/33e4a8c72bdb8d4aefd17f9e89d1c1200e0b3340.webp)
所an=a1+(n-1)d=2n-1,n∈N*.
![](https://img.fx361.cc/images/2023/0227/f2b2cdc1db0aa13220deeb08dd28ad5b5922356f.webp)
因为t≤15,所以(2m-1)2≤87.又m∈N*,所以2m-1≤9,得m≤5.
![](https://img.fx361.cc/images/2023/0227/b747241e03f518a28558b7724933081148249770.webp)
选条件②:
![](https://img.fx361.cc/images/2023/0227/21a71b130cdcb6a2b9b661618cee53c04053ffee.webp)
![](https://img.fx361.cc/images/2023/0227/f2b2cdc1db0aa13220deeb08dd28ad5b5922356f.webp)
因为t≤15,所以(2m-1)2≤87.又m∈N*,所以2m-1≤9,所以m≤5.
![](https://img.fx361.cc/images/2023/0227/b747241e03f518a28558b7724933081148249770.webp)
![](https://img.fx361.cc/images/2023/0227/b3a628fb715a39a75834c1a1282aac5a10eb97b2.webp)
![](https://img.fx361.cc/images/2023/0227/92f67b804c92b9618521929a87afaa7d0fe75ba3.webp)
(2)在Rt∆BCD中,设∠DBC=α,则BC=BDcosα=2cosα.
![](https://img.fx361.cc/images/2023/0227/0c3689ea63a2e14a327fb4c74746476ef7e574de.webp)
![](https://img.fx361.cc/images/2023/0227/f39de4e6d032fa1e547d18e0ab89ed0edec828d0.webp)
![](https://img.fx361.cc/images/2023/0227/94229f23120236bfcb9443842c2d633d5ca27565.webp)
![](https://img.fx361.cc/images/2023/0227/ec71fc83cd19a889bda29ac5ae580bafbbbc87bc.webp)
20.(1)① 如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥.
![](https://img.fx361.cc/images/2023/0227/d03c949ed30c32c387edb2f0f59cb569733add5d.webp)
② 依上面剪拼方法,有V柱>V锥.
![](https://img.fx361.cc/images/2023/0227/df43c3c70ae1b026186f0bfe62180ce9708a9fb7.webp)
![](https://img.fx361.cc/images/2023/0227/5fef9e6a556af072d5bce23c15c9ad9fd848f363.webp)
![](https://img.fx361.cc/images/2023/0227/17040d44e3d5395039402b3344d9f444403677fe.webp)
![](https://img.fx361.cc/images/2023/0227/cebdae9715bd952c2a2d31b0fae74c1a98407745.webp)
![](https://img.fx361.cc/images/2023/0227/919d4de51e5b5582a4536306858c831c8f074ed8.webp)
![](https://img.fx361.cc/images/2023/0227/f83af169e4b2f97cb253bcffba37a5b1b5714dc2.webp)
![](https://img.fx361.cc/images/2023/0227/85010431bdd8ce5177557a80e7c231280423bfc2.webp)
![](https://img.fx361.cc/images/2023/0227/db5bb3dc32a516e1c93d85d74e9753e5188eebbf.webp)
![](https://img.fx361.cc/images/2023/0227/a7181e70e3bb48ea7fd9769b3fe1ea25fc446759.webp)
![](https://img.fx361.cc/images/2023/0227/e71e42e15f3276b82dc5f42489e4052d0189f2c5.webp)
![](https://img.fx361.cc/images/2023/0227/dbdaed8a1a253134897087e7b2656f83b3314389.webp)
令φ(x)=-ex+e,则φ′(x)=-ex<0,即g′(x)为单调减函数.又g′(1)=0,故当x≤1时,g′(x)≥0;x>1时,g′(x)<0.所以g(x)的单调增区间为(-∞,1),单调减区间为(1,+∞).
(2)因为f′(x)=ex(-aex+x),依题意可知f′(x)=0有两个不等实根,即aex=x有两个不等实根x1,x2.
![](https://img.fx361.cc/images/2023/0227/afa6c4d81980297baa824beba3becca86d72441a.webp)
![](https://img.fx361.cc/images/2023/0227/cd01cda56b93e54eda3ec7b214bdf50c4448b8dd.webp)
![](https://img.fx361.cc/images/2023/0227/469dc736a6bdcd7dff61520a3d628fc826ae654e.webp)
设函数h(t)=(3-t)et-2t-3(t<0),则h′(t)=(2-t)et-2(t<0),h″(t)=(1-t)et>0,易知h′(t)在t<0单调增,即h′(t)h(0)=0.
综上,原不等式x1+2x2>3得证.