如何突破小学数学课堂难点的策略
2021-11-21胡光祥
胡光祥
(贵州省遵义市习水县第一小学 贵州 习水 564600)
评价一堂数学课的好坏,首先要看知识目标的达成情况,关键看教师是否正确地讲解了教材的基本内容,是否突破了教材的重点及解决了教材的难点,使学生真正地理解和掌握了教材的基本知识。教师在教学中能否抓住重点、突破难点,是做好教学工作的基本条件,也是教师能力的表现。突出重点、突破难点是小学数学教学成功的关键。往往我们为如何解决重难点而绞尽脑汁,甚至上公开课时,要么学生茫然,原地打转,要么教师茫然,然而效果并不理想。那么如何在课堂教学中突破难点是每位教师必须研究解决的问题。下面谈谈自己在教学中的一些体会。
数学课堂的难点,多数出现在新课中,可能是课堂初、可能是课堂中,可能是课堂末,也有可能出现在练习中。在教学中,突破难点要因学情而定,要因教材的内容而定,没有固定的方法,也不是一味的照搬。教学方法没有万能的方法,别人成功用过的不一定是适合自己的,只有适合学情的方法才是最好的方法。
1.创设问题法,在问答中突破难点
在突破难点时,采用提问方式突破难点,要求问题要精准,不模糊,不笼统。老师问问题时,学生一听就能回答,在师生问答过程中完成目标知识的学习。教师设计问题时,要目标明确,层次分明,逻辑清晰,语言简洁,问题明了。
2.逻辑推理法,在过程中突破难点
在突破难点时,采用逻辑推理突破难点,要求内容由浅入深,层次要分明,板书要简洁,逻辑思路要环环相扣,学生一看就懂,在逻辑推理过程中完成目标知识的学习。
如:在教学圆面积公式中,出示两个完全相同的圆,引导学生将其中一个圆转化成已学过的近似长方形,观察圆的面积和长方形面积大小的变化,并引导学生观察宽与圆的半径的关系,长和圆周长的关系,把长方形的长和宽替换成圆的半径和圆周长的一半,层层深入推出圆的面积公式。
3.动手操作法,在操作中突破难点
让学生通过操作,从中观察、记录相关数据,发现数据逻辑,找出规律,找到解决问题的突破口,最终揭示其本质。
如:几何图形面积公式的推导。(1)长方形和正方形面积公式的推导,让学生在摆出不同的图形,数出图形的边长块数和面积数,通过有规律的板书让学生发现其特征,得出结论。(2)平行四边形面积公式的推导,让学生动手割补,转化成已经学过的图形(长方形),要求学生上台展示,找出长方形和平行四边形的关系,通过逻辑推理得出结论。
4.以旧引新法,在迁移中突破难点
从学生学过的知识入手,由浅入深,由易到难,由精确数到概数,由数据到图形,由数据到字母等,让学生在知识迁移中达成目标。
如:用字母表示数,先让学生进行简单的加减乘除的分类列式,教师又适时地在原题中改动数据,并要求学生进行列式,最后对特殊情况:字母与字母相乘、字母与数相乘、平方的简写进行强调和练习。让学生在无意中既掌握了知识,又突破课堂的难点。
5.建模引导法,在分析中突破难点
引导学生提炼数学语言,建立等量关系式,在模式框架下引导学生发现问题设成未知数(多个未知数的要找出未知数之间的联系),并根据已学知识,引导学生根据等量关系式建立方程,并选择合适的方法进行解答,实现目标知识的达成。
如:在分数除法应用题、和倍差倍应用题、行程问题和工程问题时,首先引导学生根据数学信息提炼数学语言,建立等量关系式,引导学生观察哪些量是知道的,哪些量不知道,不知道的量有几个,不知道的量之间有什么联系(相同的或相互联系的),从而找出未知数,并设立方程解答。
6.观察对比法,在对比中突破难点
引导学生难察不同的数据、图形、算式、方程等,通过转化,最终找出共同的地方,并提示其共同的特征,突破本堂课的难点。
如:稍复杂的分数除法应用题。让学生认真理解题意,引导学生得出不同的等量关系式。为节约课堂教学时间,分小组进行讨论解答,让学生按教师规定的地点板书在黑板上,并引导学生观察过程,找出相同的地方,师并进行强调从不同到相同的实质,实现教学课堂难点的突破。
7.设错纠错法,在发现中突破难点
事先设置错误,让学生观察,提出质疑,采用小组讨论等形式,学生结合生活经验,提出自己的方法,教师引导得出结论。
如:两位数乘两位数,教师引入两位数乘两位数的算式后,可事先出示自己设置的错误对位的竖式,让学生小组合作,观察发现教师问题,提出错误的地方,并让学生说出错的理由,再让学生说出两位数乘两位数的方法,从而突破课堂的难点。
总之,因教学内容类型不一,教学难点也各式各样,所以教师要综合各种因素,课前要准确把握每堂课的教学难点,合理设计课堂教学,选择灵活的教学策略,引导学生敢于突破,勤于思考,启发学生的数学思维,引导学生有效突破难点。同时突破一堂数学课的难点,有时一种方法即可,但有时要多种方法并用。