秸秆还田条件下固氮蓝藻复合菌剂与促生细菌SM13对水稻产量及稻米品质的影响
2021-08-02宋维民王丽艳郭永霞孙强吕艳东荆瑞勇王海泽
宋维民 王丽艳 郭永霞 孙强 吕艳东 荆瑞勇 王海泽
摘要:【目的】研究秸稈还田条件下施用固氮蓝藻复合菌剂和促生细菌SM13对水稻产量及品质的影响,为2种微生物肥料在秸秆还田中的应用提供实践经验和理论依据。【方法】以水稻品种龙粳31为试验材料,设常规施肥(CK)、施用固氮蓝藻复合菌剂(LZ)、施用促生细菌SM13(SM)及混施固氮蓝藻复合菌剂和促生细菌SM13(SL)共4个处理。测定水稻主要生育期的叶面积及干物质质量,在水稻成熟后考察水稻穗部性状和产量,在稻米理化性质稳定后测定稻米加工、外观、营养和食味品质,对比分析不同处理对水稻产量及稻米品质的影响。【结果】与CK相比,LZ处理的水稻灌浆期干物质质量显著增加26.40%(P<0.05,下同);SL处理显著降低了一次枝梗结实率,LZ处理显著降低了二次枝梗的千粒重;SM、SL和LZ处理的产量分别增加10.00%、9.80%和8.78%。单施固氮蓝藻复合菌剂或促生细菌SM13及二者混施对稻米加工、外观和营养品质无显著影响(P>0.05),但SM和SL处理显著改善了稻米食味品质,其口感值和食味值较CK分别提高7.23%、4.87%和7.22%、5.74%。相关分析结果表明,产量及其构成与水稻穗部性状存在不同程度的相关性,其中产量与穗质量呈极显著正相关(P<0.01),与二次枝梗枝梗数呈显著正相关。【结论】在秸秆还田条件下固氮蓝藻复合菌剂和促生细菌SM13具备提高水稻产量的潜力,且促生细菌SM13能在一定程度上改善稻米食味品质。
关键词: 秸秆还田;固氮蓝藻复合菌剂;促生细菌SM13;水稻;产量;品质
中图分类号: S511 文献标志码: A 文章编号:2095-1191(2021)03-0762-07
Effects of nitrogen-fixing cyanobacteria complex microbial inoculant and growth-promoting bacteria SM13 on yield and quality of rice with straw turnover
SONG Wei-min, WANG Li-yan, GUO Yong-xia, SUN Qiang, LYU Yan-dong,
JING Rui-yong*, WANG Hai-ze*
(Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China)
Abstract:【Objective】The effects of nitrogen-fixing cyanobacteria complex microbial inoculant and growth-promo-ting bacteria SM13 on rice yield and quality were investigated with straw turnover, which provided a theoretical basis for the application of microbial fertilizer. 【Method】The rice variety Longjing 31 was used as the tested material. Four treatments were designed, namely, conventional fertilization(CK), treatment applied with nitrogen-fixing cyanobacteria complex microbial inoculant(LZ), treatment applied with growth-promoting bacterium SM13(SM), treatment applied with both of nitrogen-fixing cyanobacteria complex microbial inoculant and growth-promoting bacterium SM13(SL). The leaf area and dry matter weight of rice in the main growing stages were measured, the spike traits and yield of rice were investigated after maturity, and the processing, appearance, nutrition, and taste quality of rice were measured after the physical and chemical properties of rice were stabilized, and the effects of different treatments on rice yield and rice quality were compared and analyzed. 【Result】Compared with CK treatment, the dry matter weight of rice under LZ treatment was significantly increased by 26.40% at the grain filling stage(P<0.05, the same below), SL treatment significantly reduced the seed setting rate of primary branches, and LZ treatment significantly reduced the 1000-grain weight of secondary branches. The yield of SM,SL and LZ increased by 10.00%, 9.80% and 8.78% compared with CK, respectively. There was no significant effect on rice processing, appearance and nutritional quality by the single application of nitrogen-fixing cyanobacteria complex microbial inoculant, growth-promoting bacteria SM13 and the combination of the two(P>0.05). But SM and SL treatments significantly improved rice taste quality compared with CK treatment, the texture and taste values increased by 7.23%, 4.87% and 7.22%, 5.74% respectively compared with CK. Correlation analysis indicated that there were different levels of correlation between yield and rice spike traits. There was extremely significant positive correlation between yield and panicle weight(P<0.01), and significant positive correlation between yield and secondary branch number. 【Conclusion】The application of nitrogen-fixing cyanobacteria complex microbial inoculants and growth-promo-ting bacteria SM13 has the potential to increase rice yield with straw turnover, and growth-promoting bacteria SM13 can enhance rice taste quality to a certain extent.
Key words: straw turnover; nitrogen-fixing cyanobacteria complex microbial inoculants;growth-promoting bacteria SM13; rice; yield; quality
Foundation item: National Key Research and Development Program of China(2018YFD0300104); National Natural Science Foundation of China(31870477); Heilongjiang Natural Science Foundation(C2018046); Heilongjiang Bayi Agricultural University Doctor Start-up Fund Project(XDB2016-02)
0 引言
【研究意义】随着我国农业生产的高速发展,秸秆年生产总量呈现不断增长趋势,其中稻秆产量所占比重较大(朱建春等,2012)。秸秆中含有多种大量及微量元素,在农业发展中是一类可利用的重要资源之一(韩鲁佳等,2002)。虽然秸秆还田技术在不断完善,但秸秆还田过程中一直存在着难降解和传递病原菌等一系列问题(伍佳等,2019),且秸秆在还田过程中常表现出与作物 “争氮”的现象,影响水稻植株生长(刘世平等,2007)。增施氮肥是解决作物生长缺氮的重要手段之一,但施用氮肥过量常会造成农田生态环境污染。因此,通过研发绿色高效且具备固氮作用及促生功能的微生物肥料,以解决秸秆还田条件下水稻生长过程中對氮素的需求与缺少氮素时增施氮肥对环境造成污染的矛盾,可为微生物肥料在农业秸秆还田中的应用提供一定的实践经验和理论基础。【前人研究进展】研究表明,固氮蓝藻是一类具有固氮作用的革兰氏阴性菌,能对土壤进行氮素调控(Latysheva et al.,2012),某些类群还具备分泌吲哚-3-乙酸(IAA)的生物学特性(Boopathi et al.,2013),能提高水稻等农作物的产量(Song et al.,2005;Admasie et al.,2019)。因此,固氮微生物在秸秆还田中进行的生物固氮意义重大。Saadatnia和Riahi(2009)通过固氮蓝藻微生物肥料试验,发现固氮蓝藻能显著促进水稻幼苗根系生长,且利于盆栽水稻生长。Prasanna等(2009)对分离出的多株固氮蓝藻进行盆栽试验,结果表明近半数固氮蓝藻接种后可改善土壤肥力,提高作物产量。Pereira等(2009)研究发现,减施氮肥与固氮蓝藻肥料配施处理土壤氮素水平显著提高,且其作物产量和品质与常规施肥处理无显著差异。Rocheli等(2016)对埃塞尔比亚的3种常见作物进行固氮蓝藻肥料试验,结果表明施用固氮蓝藻可增加土壤养分,提高作物产量。Zhou等(2020)研究表明,对水稻纹枯病有显著抑制作用的3株固氮蓝藻的分泌物能抑制病原菌生长,且接种到稻田能提高水稻产量。此外,近年来植物促生细菌(Plant growth-promoting bacteria,PGPR)在农业领域中的应用成果也受到广泛关注。植物促生细菌是一类具备生防作用(Etesami and Alikhani,2016;Rais et al.,2018)、促生作用和诱导植株产生抗逆性的菌株(Glick,2012;Vurukonda et al.,2016;Sarkar et al.,2018)。Lavakush等(2014)进行植物促生细菌与磷肥配施的盆栽试验,结果表明不同磷肥水平下接种植物促生细菌均提高了盆栽水稻的产量。Rocheli等(2016)开展了植物促生细菌与减施氮肥的水稻田间试验,发现施用植物促生细菌有利于植株与土壤间的养分循环,且减氮时施用植物促生细菌对产量无显著影响。Rais等(2018)研究发现,在田间接种拮抗芽孢杆菌可抑制田间水稻稻瘟病发病率,提高水稻产量。Xiao等(2020)在砷污染的田间进行接种植物促生细菌试验,发现可降低砷对稻米的危害,同时促进水稻产量增加。【本研究切入点】前人已开展了大量有关固氮蓝藻与植物促生细菌的相关研究(Obana et al.,2007;Rocheli et al.,2016;Bakhshande et al.,2017)。本课题组前期试验也证实固氮蓝藻复合菌剂有促进秸秆降解的潜力,且微生物肥料能提高水稻产量(杨帆等,2019;宋维民等,2020),但关于秸秆还田条件下固氮蓝藻和植物促生细菌微生物肥料对水稻产量及稻米品质调控的作用效果尚未可知,仍需进一步研究。【拟解决的关键问题】以水稻品种龙粳31为试验对象开展田间小区试验,在稻秆全量还田条件下,以常规施肥处理为对照,设单施固氮蓝藻复合菌剂、促生细菌SM13及二者混施处理,对比分析不同处理水稻主要生育期的叶面积和干物质质量及水稻产量、稻米品质的差异,明确不同处理在稻秆还田条件下对水稻产量和稻米品质的影响,为固氮蓝藻复合菌剂和促生细菌SM13在秸秆还田中的应用提供实践经验和理论依据。
1 材料与方法
1. 1 试验材料与试验区概况
供试水稻品种:龙粳31。供试肥料:固氮蓝藻菌剂是由本实验室(黑龙江八一农垦大学生命科学技术学院微生物实验室,下同)从稻田土壤及水体中分离出的复合藻类菌系(宋维民等,2020);促生细菌SM13是本实验室从水稻根际内分离纯化出的一株枯草芽孢杆菌(韩如月,2019)。
1. 2 试验方法
试验于2019年在黑龙江农垦总局齐齐哈尔分局查哈阳农场开展。供试土壤有机质含量26.85 g/kg、碱解氮含量121.42 mg/kg、有效磷含量13.31 mg/kg、速效钾含量96.30 mg/kg,土壤pH 8.03。
试验采用单因素田间小区设计,在秸秆全量还田条件下施用固氮蓝藻复合菌剂和促生细菌SM13菌剂,设4个处理:常规施肥处理(CK)、施用固氮蓝藻复合菌剂处理(LZ)、施用促生细菌SM13菌剂处理(SM)、同时施用固氮蓝藻复合菌剂和促生细菌SM13菌剂处理(SL)。固氮蓝藻复合菌剂与促生细菌SM13菌剂的施用均参照宋维民等(2020)的方法进行,田间小区面积405 m2。2019年4月10日水稻播种,5月14日秧苗移栽。
1. 3 测定项目及方法
1. 3. 1 叶面积和干物质质量 于水稻分蘖期、齐穗期和灌浆期测定各处理的水稻叶面积和干物质质量。
在测定水稻叶面积之前选取各田间小区长势均匀的地段设置调查点,田间调查点包括不间断的20穴水稻植株,以调查点内植株平均茎数数值为标准采集相同茎数的水稻叶面积测定样品,将样品带回室内后测定并记录每株水稻叶片的叶宽和叶长最大数值,采用长宽法及干质量法计算植株总叶面积:测量叶面积=叶面积系数(0.75)×叶宽×叶长,总叶面积=测量叶叶面积/测量叶片干质量×总叶片干质量。
测定叶面积后,取植株地上部分测定干物质质量,105 ℃静置30 min,80 ℃烘至恒重后,称重即为干物质质量。
1. 3. 2 水稻产量 水稻成熟后,每处理选取具有代表性的6穴用于考种计产,测定水稻穗部农艺性状产量及其构成。
1. 3. 3 稻米品质 将收获的水稻自然风干脱谷,待稻米理化性质稳定后,参照GB/T 17891—2017《优质稻谷》测定稻米品质,使用稻米碾磨机、ES-1000便携式品质分析仪(日本静冈机械株式会社)、VECTOR22/N型近红外光谱仪(德国BRUKER公司)和米饭食味计-STA1A(日本佐竹公司)测定稻米加工、外观、营养与食味品质。
1. 4 统计分析
采用Excel 2007、SPSS 20.0和Origin 2017进行数据的统计分析和图表制作。
2 结果与分析
2. 1 不同处理的水稻叶面积和干物质质量比较
由图1可看出,水稻分蘖期、齐穗期和灌浆期各处理的水稻叶面积无显著差异(P>0.05,下同);水稻分蘖期和齐穗期LZ、SM和SL处理的水稻干物质质量也与CK无显著差异,而灌浆期LZ处理的水稻干物质质量较CK显著提高26.40%(P<0.05,下同)。可见,施用固氮蓝藻复合菌剂有利于水稻灌浆期的干物质积累。
2. 2 不同处理的水稻穗部性状比较
由表1可知,不同处理间水稻穗质量、穗长和穗部着粒密度无显著差异;SL处理的一次枝梗结实率显著低于CK和SM处理;LZ处理的二次枝梗枝梗数显著低于SL处理,千粒重较CK显著降低。可见,施用固氮蓝藻复合菌剂和促生细菌SM13对水稻一次枝梗和二次枝梗性状有一定影响。
2. 3 不同处理的水稻产量比较
由表2可知,施用固氮蓝藻复合菌剂和促生细菌SM13后,各处理的每穴穗数、穗粒数、结实率、千粒重和产量均与CK无显著差异,但SM、SL和LZ处理的水稻平均产量分别较CK提高10.00%、9.80%和8.78%。说明施用固氮蓝藻复合菌剂和促生细菌SM13在秸秆全量还田条件下具备一定的水稻增产能力。
2. 4 不同处理的稻米营养、加工、外观及食味品质比较
由表3和表4可知,与CK相比,施用固氮蓝藻复合菌剂与促生细菌SM13对各处理稻米的营养、加工和外观品质无显著影响;而在食味品质的比较中,SM和SL处理的香气和完整性得分较CK分别显著降低1.78%、2.33%和4.13%、4.27%,SM处理的光泽得分较CK显著提高5.29%,SM和SL处理的口感和食味得分均显著高于CK,分别提高7.23%、4.87%和7.22%、5.74%。综上所述,单独施用促生细菌SM13及混施固氮蓝藻复合菌剂和促生细菌SM13均能在一定程度上改善稻米食味品质。
2. 5 产量及其构成与水稻穗部性状的相关分析
对产量及其构成与水稻穗部性状相关指标进行相关分析,结果(表5)显示,每穴穗数与穗质量呈极显著正相关(P<0.01,下同),每穴穗数与着粒密度和一次枝梗枝梗数分别呈极显著和显著负相关;穗粒数与穗长、着粒密度、一次枝梗的枝梗数和粒数、二次枝梗的枝梗数和粒数呈极显著或显著正相关;结实率与一次枝梗结实率和二次枝梗结实率均呈极显著正相关,与二次枝梗粒数呈显著负相关;千粒重与一次枝梗的结实率和千粒重及二次枝梗千粒重呈显著或极显著正相关;产量与穗质量和二次枝梗枝梗数分别呈极显著和显著正相关。
3 讨论
秸秆的分解及土壤中微生物的活动会引起土壤氮素含量下降 (Jawso and Elliott,1986),导致作物生长中缺少氮素供应,进而影响植株生长,同时秸秆腐熟的速率呈现出“先快后慢”的趋势(刘世平等,2007)。本研究发现,在秸秆还田条件下施用固氮蓝藻复合菌剂和促生细菌SM13后对水稻叶面积无显著影响,且单施固氮蓝藻复合菌剂显著提高了灌浆期水稻的干物质积累量,这可能是固氮蓝藻将氮素转化为植物可吸收的铵态氮与秸秆养分的释放促进了植株的生长,进而增加了水稻的干物质质量。而随着土壤氮素水平的提高,水稻干物质快速累积时期延长,干物质质量也会随之增加(李晓峰等,2017),这也为后期养分向籽粒的运输提供了有利条件。
前人研究表明,固氮蓝藻能促进水稻生长,诱导植株产生抗性,增加水稻产量(Zhou et al.,2020)。本课题组前期研究也发现稻田中接种固氮蓝藻和促生细菌SM13能提高水稻产量(宋维民等,2020)。本研究结果表明,在秸秆全量还田条件下,单独施用促生细菌SM13或固氮蓝藻复合菌剂及二者混施处理较常规施肥处理的水稻产量分别提高10.00%、9.80%和8.78%,且在相关分析中发现,与产量呈极显著和显著正相关的是穗質量和二次枝梗枝梗数,且与穗质量呈极显著正相关的为每穴穗数,与二次枝梗枝梗数呈极显著正相关的为穗粒数,而单施固氮蓝藻复合菌剂、促生细菌SM13及二者混施后水稻穗质量、二次枝梗枝梗数、每穴穗数和穗粒数分别表现出不同程度的增幅,这可能是本研究中水稻增产的主要原因。尽管该结果与前期研究结果相似,但与非秸秆还田下的水稻增产相比,推测本研究中秸秆还田条件下水稻增产的原因可能是固氮蓝藻复合菌剂与促生细菌SM13在秸秆腐熟时仍能进行有效固氮作用及分泌生长激素,从而促进水稻植株生长,进而提高了水稻产量。前人关于固氮蓝藻与植物促生细菌在农作物中应用的报道结果多为可提高产量(Rocheli et al.,2016),但其中藻类肥料与秸秆还田的研究报道较少见,有研究表明秸秆的浸泡液等对藻类生长有一定的抑制作用(苏文等,2017),这可能是影响藻类肥料在秸秆还田中应用的原因之一。而本研究在秸秆全量还田条件下施用固氮蓝藻复合菌剂和促生细菌SM13后,水稻产量增幅较明显。可见,本研究中的固氮蓝藻复合菌剂和促生细菌SM13在秸秆还田技术中有着一定的应用价值,有待进一步的开发利用。
稻米品质的优劣受多种因素调控。不同氮肥运筹水平下,秸秆还田能提高稻米粘稠度和蛋白质含量,显著降低外观品质(嚴奉君等,2015),但秸秆还田后提高了稻米的食味品质,其营养和外观品质也有所改善(刘世平等,2007;严奉君等,2015;陈梦云等,2017)。本研究结果表明,秸秆还田条件下,单施促生细菌SM13或固氮蓝藻复合菌剂及混施处理对稻米营养、加工和外观品质均无显著影响,但单施促生细菌SM13及混施处理均显著改善了稻米食味品质,这可能与促生细菌SM13的促生特性有关,其在分泌生长激素的同时,也可抑制植物病原真菌的入侵,预防水稻植株真菌性病害的发生,促进籽粒的形成,进而提高稻米食味品质。本研究结果明确了秸秆还田条件下施用固氮蓝藻复合菌剂与促生细菌SM13对水稻产量及稻米品质的作用效果,但其作用机理尚不明确,仍需进一步研究。
4 结论
在秸秆还田条件下,施用固氮蓝藻复合菌剂与促生细菌SM13具备提高水稻产量的潜力,且促生细菌SM13能在一定程度上改善稻米食味品质。可见,固氮蓝藻复合菌剂和促生细菌SM13作为微生物肥料在秸秆还田中具备一定的应用潜力,有待进一步开发利用。
参考文献:
陈梦云,李晓峰,程金秋,任红茹,梁健,张洪程,霍中洋. 2017. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响[J]. 作物学报,43(12):1802-1816. doi:10.3724/SP.J.1006.2017.01802. [Chen M Y,Li X F,Cheng J Q,Ren H R,Liang J,Zhang H C,Huo Z Y. 2017. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplan-ting japonica rice with good taste quality[J]. Acta Agronomica Sinica,43(12):1802-1816.]
韩鲁佳,闫巧娟,刘向阳,胡金有. 2002. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报,18(3):87-91. [Han L J,Yan Q J,Liu X Y,Hu J Y. 2002. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering,18(3):87-91.]
韩如月. 2019. 水稻根内促生拮抗细菌的筛选及其性能评价[D]. 大庆:黑龙江八一农垦大学. [Han R Y. 2019. Scree-ning and performance evaluation of promoting-growth and antagonistic bacteria in rice roots[D]. Daqing:Heilong-jiang Bayi Agricultural University.]
李晓峰,程金秋,梁健,陈梦云,任红茹,张洪程,霍中洋,戴其根,许轲,魏海燕,郭保卫. 2017. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响[J]. 作物学报,43(6):912-924. doi:10.3724/SP.J.1006.2017.00912 . [Li X F,Cheng J Q,Liang J,Chen M Y,Ren H R,Zhang H C,Huo Z Y,Dai Q G,Xu K,Wei H Y,Guo B W. 2017. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted japonica rice[J]. Acta Agro-nomica Sinica,43(6):912-924.]
刘世平,陈文林,聂新涛,张洪程,戴其根,霍中洋,许轲. 2007. 麦稻两熟地区不同埋深对还田秸秆腐解进程的影响[J]. 植物营养与肥料学报,13(6):1049-1053. doi:10. 3321/j.issn:1008-505x.2007.06.010. [Liu S P,Chen W L,Nie X T,Zhang H C,Dai Q G,Huo Z Y,Xu K. 2007. Effect of embedding depth on decomposition course of crop residues in rice-wheat system[J]. Journal of Plant Nutrition and Fertilizers,13(6):1049-1053.]
刘世平,聂新涛,戴其根,霍中洋,许轲. 2007. 免耕套种与秸秆还田对水稻生长和稻米品质的影响[J]. 中国水稻科学,21(1):71-76. doi:10.16819/j.1001-7216.2007.01.012. [Liu S P,Nie X T,Dai Q G,Huo Z Y,Xu K. 2007. Effects of interplanting with zero tillage and wheat straw manuring on rice growth and grain quality[J]. Chinese Journal of Rice Science,21(1):71-76.]
宋维民,赵坤,杨帆,王丽艳,郭永霞,王海泽,荆瑞勇. 2020. 固氮蓝藻和促生细菌SM13对水稻产量和品质的影响[J]. 河南农业科学,49(10):12-19. doi:10.15933/j.cnki. 1004-3268.2020.10.002. [Song W M,Zhao K,Yang F,Wang L Y,Guo Y X,Wang H Z,Jing R Y. 2020. Effects of nitrogen-fixing cyanobacteria and growth-promoting bacteria SM13 on yield and quality of rice[J]. Journal of Henan Agricultural Sciences,49(10):12-19.]
苏文,陈洁,张胜鹏,孔繁翔. 2017. 水稻秸秆浸泡液对蓝藻和绿藻生长选择性抑制作用[J]. 环境科学,38(7):2901-2909. doi:10.13227/j.hjkx.201612017. [Su W,Chen J,Zhang S P,Kong F X. 2017. Selective inhibition of rice straw extract on growth of cyanobacteria and chlorophyta[J]. Environmental Science,38(7):2901-2909.]
伍佳,王忍,吕广动,隆斌庆,杨飞翔,陈慧娜,黄璜. 2019. 不同秸秆还田方式对水稻产量及土壤养分的影响[J]. 华北农学报,34(6):177-183. doi:10.7668 /hbnxb.201751760. [Wu J,Wang R,Lü G D,Long B Q,Yang F X,Chen H N,Huang H. 2019. Effects of different straw returning ways on rice yield and soil nutrients[J]. Acta Agriculturae Boreali-Sinica,34(6):177-183.]
严奉君,孙永健,马均,徐徽,李玥,代邹,杨志远. 2015. 不同土壤肥力條件下麦秆还田与氮肥运筹对杂交稻氮素利用、产量及米质的影响[J]. 中国水稻科学,29(1):56-64. doi:10.3969/j.issn.1001-7216.2015.01.007. [Yan F J,Sun Y J,Ma J,Xu H,Li Y,Dai Z,Yang Z Y. 2015. Effects of wheat straw mulching and nitrogen management on grain yield,rice quality and nitrogen utilization in hybrid rice under different soil fertility conditions[J]. Chinese Journal of Rice Science,29(1):56-64.]
杨帆,赵坤,郭永霞,钱永德,王丽艳,荆瑞勇. 2019. 微生物促腐剂配施固氮蓝藻对水稻秸秆腐解的影响[J]. 南方农业学报,50(11):2421-2428. doi:10.3969/j.issn.2095-1191. 2019.11.06. [Yang F,Zhao K,Guo Y X,Qian Y D,Wang L Y,Jing R Y. 2019. Effects of microbial promoting-decomposing agent combined with fixing-nitrogen cyanobacteria on rice straw decomposition[J]. Journal of Southern Agriculture,50(11):2421-2428.]
朱建春,李荣华,杨香云,张增强,樊志民. 2012. 近30年来中国农作物秸秆资源量的时空分布[J]. 西北农林科技大学学报(自然科学版),40(4):139-145. [Zhu J C,Li R H,Yang X Y,Zhang Z Q,Fan Z M. 2012. Spatial and temporal distribution of crop straw resources in 30 years in China[J]. Journal of Northwest A & F University(Natu-ral Science Edition),40(4):139-145.]
Admasie M A,Wolde G,Sido M Y,Yigrem S,Woldemeske E,Chala A,Davis J G. 2019. Comparison of cyanobacterial bio-fertilizer with urea on three crops and two soils of Ethiopia[J]. African Journal of Agricultural Research,14(10):588-596. doi:10.5897/AJAR2018.13707.
Bakhshandeh E,Pirdashti H,Gilani Z. 2017. Application of mathematical models to describe rice growth and nu-trients uptake in the presence of plant growth promoting microorganisms[J]. Applied Soil Ecology,124:171-184.doi:10.1016/j.apsoil.2017.10.040.
Boopathi T,Balamurugan V,Gopinath S,Sundararaman M. 2013. Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis[J]. Journal of Plant Growth Regulation,32(4):758-766. doi:10.1007/s00344-013-9342-8.
Etesami H,Alikhani H A. 2016. Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice(Oryzia sativa L.) pathogens[J]. European Journal of Plant Pathology,147(1):7-14. doi:10. 1007/s10658-016-0981-z.
Glick B R. 2012. Plant growth-promoting bacteria:Mechanisms and applications[J]. Scientifica,2012:963401. doi:10.6064/2012/963401.
Jawson M D,Elliott L F. 1986. Carbon and nitrogen transformations during wheat straw and root decomposition[J]. Soil Biology & Biochemistry,18(1):15-22. doi:10.1016/0038-0717(86)90097-0.
Latysheva N,Junker V L,Palmer W J,Codd G A,Barker D. 2012. The evolution of nitrogen fixation in cyanobacteria[J]. Bioinformatics,28(5):603-606. doi:10.1093/bioinformatics/bts008.
Lavakush,Yadav J,Verma J P,Jaiswal Durgesh Kumar,Kumar Ashok. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth,yield and nutrient content of rice(Oryza sativa L.)[J]. Ecological Engineering,62:123-128. doi:10.1016/j.ecoleng.2013.10. 013.
Obana S,Miyamoto K,Morita S,Ohmori M,Inubushi K. 2007. Effect of Nostoc sp. on soil characteristics,plant growth and nutrient uptake[J]. Journal of Applied Phyco-logy,19:641-646. doi:10.1007/s10811-007-9193-4.
Pereira I,Ortega R,Barrientos L,Moya M,Reyes G,Kramm V. 2009. Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile[J]. Journal of Applied Phycology,21:135-144. doi:10. 1007/s10811-008-9342-4.
Prasanna R,Nain L,Ancha R,Srikrishna J,Joshi M,Kaushik B D. 2009. Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop[J]. Egyptian Journal of Biology,11:26-36.
Rais A,Shakeel M,Malik K,Hafeez F Y,Yasmin H,Mumtaz S,Hassan M N. 2018. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions[J]. Microbiological Research,208:54-62. doi:10.1016/j.micres.2018.01.009.
Rocheli D S,Rodrigo S,Luciane M P P. 2016. Bacterial inoculants for rice:Effects on nutrient uptake and growth promotion[J]. Archives of Agronomy and Soil Science,62(4):561-569. doi:10.1080/03650340.2015.1065973.
Saadatnia H,Riahi H. 2009. Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants[J]. Plant Soil & Environment,55(5):207-212. doi:10.1007/s11104-008-9843-6.
Sarkar A,Ghosh P K,Pramanik K,Mitra S,Soren T,Pandey S,Mondal M H,Maiti T K. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress[J]. Research in Microbiology,169(1):20-32. doi:10.1016/j.resmic.2017.08. 005.
Song T Y,M?rtensson L,Eriksson T,Zheng W W,Rasmussen U. 2005. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian,China[J]. FEMS Microbiology Ecology,54(1):131-140. doi:10.1016/j.femsec.2005.03.008.
Vurukonda S S K P,Vardharajula S,Shrivastava M,Skz A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Research in Microbiology,184:13-24. doi:10.1016/j.micres.2015.12. 003.
Xiao A W,Li Z,Li W C,Ye Z H. 2020. The effect of plant growth-promoting rhizobacteria(PGPR)on arsenic accumulation and the growth of rice plants(Oryza sativa L.)[J]. Chemosphere,242:125136. doi:10.1016/j.chemosphere.2019.125136.
Zhou Y W,Bao J Q,Zhang D H,Li Y J,Li H S,He H Z. 2020. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism[J]. Applied Soil Ecology,153:103580. doi:10.1016/ j.apsoil.2020.103580.
(責任编辑 王 晖)