APP下载

神经营养因子介导运动的抗抑郁作用

2018-11-07刘文彬刘微娜漆正堂

体育科学 2018年10期
关键词:抗抑郁海马神经元

刘文彬,刘微娜,漆正堂



神经营养因子介导运动的抗抑郁作用

刘文彬1,2,刘微娜1,2,漆正堂1,2

1.华东师范大学 “青少年健康评价与运动干预”教育部重点实验室, 上海 200241; 2.华东师范大学 体育与健康学院, 上海 200241

神经营养因子是对神经元的发育、存活及凋亡发挥作用的蛋白质,因其在神经发育和神经可塑性中扮演的重要角色而备受神经科学领域的关注。抑郁的神经营养假说认为,抑郁会引起神经营养因子表达水平的改变,抑郁症患者多种神经营养因子的血清水平和脑区表达较健康人有明显差异,提示,神经营养因子可能成为新型抑郁症标志物。运动可通过改变多种神经营养因子的表达水平,包括神经生长因子基因家族、成纤维细胞生长因子家族、生神经细胞因子家族、胶质细胞源性神经营养因子家族以及血管内皮生长因子和胰岛素样生长因子-1等其他神经营养因子,进而调控神经可塑性、神经发生、细胞存活、下丘脑-垂体-肾上腺轴活性、单胺类神经递质、中枢炎症等,从而发挥其抗抑郁作用。梳理神经营养因子介导运动抗抑郁的可能机制,这将有助于筛选出“外周营养因子”作为抑郁症液体活检、运动干预的生物标记,为抑郁症的研究和治疗提供更多可能性。

神经营养因子;抑郁;运动干预;介导机制

自20世纪80年代以来,人们发现不同类型生长因子对神经元的发育及生长发挥调节支持作用,这些具有神经营养作用的物质被统称为神经营养因子(neurotrophic factors, NTFs),包括神经生长因子基因家族(nerve growth factor gene family)、成纤维细胞生长因子家族(fibroblast growth factor family)、生神经细胞因子家族(neuropoietic cytokine family)、胶质细胞源性神经营养因子家族(gliar cell line-derived neurotriphic factor family)以及血管内皮生长因子(vascular endothelial growth factor,VEGF)、胰岛素样生长因子-1(insulin-likegrowthfactor1,IGF-1)等其他神经营养因子。根据Duman提出的“神经营养假说”[36],某些NTFs可改变由抑郁导致的神经元萎缩或凋亡,且抗抑郁治疗可逆转抑郁引发的NTFs血清浓度及其表达发生的改变,因此,某些NTFs一定程度上可被视为抑郁症的外周标志物。近年来,运动疗法因其疗效显著,无毒副作用,可同时降低其他疾病发病率等优势在抑郁治疗领域中备受青睐。研究发现,运动可使某些NTFs的浓度和表达发生改变,提示,NTFs可能介导了运动的抗抑郁作用。本文主要对与抑郁症密切相关的NTFs及其介导运动抗抑郁的可能机制作一综述。

1 神经生长因子基因家族

神经生长因子基因家族在胚胎发育期参与建立神经系统,保护和修复受损神经元并促进其生长,对神经细胞的存活、生长、发育、分化及新陈代谢等都具有重要调控作用。该家族目前已知成员除神经生长因子(nerve growth factor,NGF)外,还有脑源性神经营养因子(brain derived neurotrophic factor,BDNF)、神经营养素-3(neurotrophin-3,NT-3)、神经营养素-4/5(neurotrophin-4/5,NT-4/5)等。

1.1 神经生长因子(NGF)

NGF是一类促进神经生长的多肽,除可维持神经元生长存活外,还可介导突触形态可塑性。临床研究显示,抑郁患者血清NGF水平明显低于对照组[104]。抑郁症患者的抗抑郁效力与NGF基因多态性相关,NGF的DNA序列类型与抑郁治疗后的缓解程度有关[138]。动物研究发现,应激小鼠NGF的mRNA水平降低[56],抑郁大鼠NGF的mRNA水平同样降低,且表现为海马和顶叶皮质神经元受损,这为NGF通过神经元保护而防治抑郁提供了依据[5]。NGF可调节大量微小RNA(microRNAs,miRs)的表达,miRs又可调控涉及神经元发育和疾病信号通路的蛋白质。在大鼠肾上腺嗜铬细胞瘤细胞(pheochromocytoma cells,PC12)中,NGF显著上调miR-21水平,并引发丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和蛋白激酶B(protein kinase B,PKB即Akt)通路磷酸化,而MAPK和Akt是磷脂酰肌醇激酶(phosphoinositide 3-kinase,PI3K)信号的关键酶,因此,NGF可能通过miR-21/PI3k/MAPK/Akt通路,促进神经元分化并实现其对神经退行性疾病的调控[88]。

动物研究发现,自主跑轮运动可缓解社会隔离模型诱导的海马NGF浓度减少,并降低大鼠的焦虑分数[89];游泳运动可改善应激大鼠海马NGF水平的下调[61]。长期跑台运动通过拮抗下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis,HPA轴)功能亢进,减少皮质醇分泌,并使得抑郁大鼠海马NGF表达增强,从而阻止氧化应激引起的中枢神经元死亡[7]。跑台运动可升高抑郁大鼠NGF水平,NGF可能通过突触素I(synapsin I,SYN I)增加中缝核5-羟色胺(5-hydroxytryptamine,5-HT)细胞数目,近而增加海马神经元存活率[57]。抑郁发病与中枢神经元的凋亡密切相关,因此,运动可能通过调控NGF进而影响突触及神经元的生长存活,以实现对抑郁症的改善和治疗。

1.2 脑源性神经营养因子(BDNF)

BDNF是一类可促进维持神经元生长、存活及功能的活性蛋白因子,其广泛分布于海马等中枢神经部位,通过酪氨酸激酶受体B(tyrosine kinase receptor B,TrkB)激活信号传导。抑郁症患者血清BDNF水平低于正常人,且血清BDNF水平与抑郁严重程度可能呈负相关[63]。抑郁症患者血清组织型纤溶酶原激活剂(tissue-type plasminogen activator,tPA)与BDNF前体(proBDNF)比率降低,tPA-BDNF通路可能与抑郁机制有关,因此,将tPA、BDNF、TrkB、proBDNF及p75神经营养因子受体(p75 neurotrophin receptor,p75NTR)相结合,将可能为重度抑郁症提供新的生物诊断标准[60],且tPA/BDNF通路中的基因变异可能在卒后抑郁的调控机制中发挥关键作用[79]。BDNF和ProBDNF二者间特别的修饰机制使其在抑郁中发挥完全相反的作用[87]。慢性应激引起海马BDNF/proBDNF比率降低,导致海马CA1区锥体神经元树突棘密度减少,并伴随胞质内蛋白kalirin-7、突触后密度蛋白-95(postsynaptic density-95,PSD95)和N-甲基-D-天门冬氨酸(N-methy-D-aspartate,NMDA)受体亚单位NR2B水平减少,从而诱发抑郁行为[101]。氯胺酮可通过阻断NMDA受体活动提高BDNF水平,从而发挥抗抑郁疗效[17]。环磷酸腺苷(cyclic adenosine monophosphate,cAMP)和核因子κB(nuclear factor-kappa B,NF-κB)分别在上下游参与BDNF介导的抑郁发病机制[24, 29]。此外,BDNF与TrkB结合后可能通过PI3K/AKT/糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK-3β)/β-链蛋白(β-catenin)或细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)/核糖体S6激酶(ribosomal S6 kinase,RSK)/环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)通路,实现对细胞的调控从而改善抑郁[29]。

BDNF可能是对运动调控最为敏感的神经营养因子。运动可增加抑郁症患者血清BDNF浓度[65],也可提高抑郁大鼠血清和海马的BDNF水平,且运动的形式和强度均影响BDNF水平的变化程度[119]。BDNF与抑郁发病的炎症标志物,如巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF)和白介素-6(interleukin-6,IL-6)等存在相关性[37]。Ⅲ型纤维连接蛋白域蛋白5(fibronectin type III domain-containing protein5,FNDC5)是鸢尾素分泌的肌肉因子,过氧化物酶体增殖物活化受体γ共激活因子-1α(peroxisome proliferator-activated receptor-γ coactivator-1α,PGC-1α)是重要的代谢调节因子,研究表明,运动可能通过PGC-1α/FNDC5/BDNF而影响神经元的存活、分化及可塑性[134]。运动可缓解卵巢摘除大鼠的抑郁行为,可能是因为BDNF导致血清中雌二醇水平增加[81]。运动还阻止了干扰素-α(interferon-α,IFN-α)诱导的海马和前额叶皮质BDNF表达的减少,进而防止IFN-α诱发的情感和认知功能障碍[22]。运动还可通过增加海马中酮体的累积,抑制组蛋白去乙酰化酶2/3(histone deacetylase,HDAC2/3)的活性,从而促进大脑BDNF的表达,这一过程涉及酮体由肝脏到海马的代谢转运过程,也反映出运动介导神经营养因子对抑郁的调控更多是基于代谢层面的[114]。此外,运动可激活糖皮质激素反应从而提高情绪记忆,这一影响由BDNF Val66Met多态性调节[66]。运动也可在BDNF启动子IV这个区域刺激DNA去甲基化,并提高活化甲基CPG结合蛋白2(methyl-CpG-binding protein 2,MeCP2),进而增加BDNF的mRNA及蛋白水平,起到缓解抑郁的作用[49]。整体而言,BDNF在运动抗抑郁领域的研究较为成熟,未来研究可考虑建立BDNF与抑郁程度的具体量化关系。

1.3 神经营养素(neurotrophin,NT)

NT-3、NT-4/5是神经元细胞发育、存活以及可塑性的关键调控分子,它们的活动涉及大量相关基因的转录和翻译表达水平。双相情感障碍(bipolar disorder,BD)患者血清NT-3和NT-4/5水平升高,这种增加仅存在于BD患者抑郁状态下,提示,BD患者NT-3和NT-4/5水平表现为病程状态依赖式增加[126]。NT-3可调节主要神经递质如5-HT、多巴胺(dopamine,DA)和去甲肾上腺素(norepinephrine,NE)等的水平,从而发挥抗抑郁作用[91]。短期束缚应激可增加蓝斑核NE能神经元NT-3水平,而抗抑郁治疗可降低其水平[115]。与此不同,长期束缚或社会挫败应激下调小鼠海马和前额皮质的NT-3水平,但在纹状体中其却表现为上调;NE转运蛋白基因敲除小鼠却表现为大脑NT-3水平的改变以及对应激的耐受,表明,NT-3可能通过NE激活通路参与情绪调控[54]。动物研究还发现,干扰素-β可能作为上游调控因子,通过上调被删节的TrkC-T1受体表达抑制NT-3信号[31]。综上,NT与抑郁之间存在一定关系,但目前相关研究较少且呈现出不同结果,因此,还需要进一步明确NT分子在抑郁发病进程中是如何发挥作用,以及发挥了怎样的作用。

锂(Li)可上调大脑NT-3水平,影响抑郁症、肌萎缩侧索硬化症等多种神经退行性疾病的发病进程,提示,NT-3不仅和抑郁相关,也与运动神经元存在一定联系[143]。自主运动诱导的NT-3及其受体TrkC上调是脊髓损伤的重要恢复途径[140]。意向性运动疗法可增加缺血脑组织中NT-3和海马轴突膜蛋白(growth-associated protein-43,GAP-43)的表达,且二者呈正相关,鉴于NT分子的神经营养功能及GAP-43在神经元生长发育过程中所发挥的作用,推断NT-3可能是运动调控抑郁的重要中介分子[1]。研究还发现,运动可改善慢性广泛性疼痛模型动物的痛觉缺失,并上调肌肉中NT-3水平,肌肉中的NT-3可通过血液进入大脑从而发挥对抑郁的介导作用[112]。此外,运动还可上调脑缺血大鼠模型对侧半球中NT-4及其受体TrkB的水平[28]。目前,NT分子在运动抗抑郁中可能存在的Crosstalk尚不清楚,因此,在未来研究中,以NT-3、NT-4/5为代表的NT分子在运动抗抑郁的相关研究中将有望成为新的重要靶点。

2 成纤维细胞生长因子家族

成纤维细胞生长因子(fibroblast growth factor,FGF)是具有广泛生物学活性的一类多肽,参与细胞的增殖、分化和迁移,并可改善新陈代谢。迄今为止,已有20多种FGF被发现,其中大多数FGF通过与细胞表面的酪氨酸激酶受体结合,激活相关通路向细胞内传递信号,从而营养修复神经细胞、参与血管发生和调节血液循环,对中枢和周围神经系统发挥一定的积极效应。急性社会应激下FGF家族分子水平的下调与抑郁症患者死后FGF分子下调的结果完全一致,表明,FGF家族分子对抑郁治疗具有重要的研究意义。

2.1 成纤维细胞生长因子2(FGF2)

FGF2不但参与血管生成,还可促进神经细胞及组织的损伤修复和营养保护。临床研究显示,抑郁症患者前额皮质和海马FGF2表达降低,且海马FGF2神经元数量减少[128]。尸检结果进一步表明,抑郁症患者海马CA1、CA4和齿状回区域的FGF2水平均降低,而BD和精神分裂症患者的FGF2水平仅在CA4区降低,在CA1和齿状回区域其表现为升高[45]。慢性抗抑郁药的治疗可增加大脑皮质神经元、海马神经元以及海马星形胶质细胞的FGF2免疫活性,并增加大脑皮质神经元和海马神经元FGF结合蛋白的免疫活性[11]。动物研究也发现,FGF2水平与小鼠抑郁程度相关,外源性注射FGF2可改善抑郁症状[4]。应激小鼠海马神经营养因子α1(neurotrophic factor-α1,NF-α1)表达上调,且通过提高FGF2介导的神经发生,阻止抑郁行为出现,NF-α1通过ERK-Sp1信号激活FGF2,罗格列酮在海马神经元中以NF-α1依赖方式上调FGF2表达[27]。FGF2敲除小鼠焦虑增强,同时其海马肾上腺皮质激素受体表达减少,且HPA轴活动增加[110]。AKT和ERK信号对FGF2的神经保护作用是必需的[26]。外源性FGF2注射可阻止神经炎症导致的ERK1/2磷酸化减少,逆转由神经炎症诱发的抑郁行为和海马神经发生受损,提示,FGF2-ERK1/2通路介导了抑郁机制[120]。大脑皮质FGF2缺乏会引起鸟苷酸转化因子Arhgef6及其下游靶点调节异常,并伴随神经突生长和树突棘形态改变,进而影响大脑神经系统功能[16]。综上,NF-α1/ERK-Sp1可能是FGF2抗抑郁机制的上游信号,激活FGF2后可能通过影响ERK1/2和AKT、Arhgef6及其下游靶点等发挥抗抑郁作用。

2.2 成纤维细胞生长因子9(FGF9)

FGF9主要分布于神经元中,对神经系统的生长发育起到重要的神经营养作用。FGF9功能紊乱可能介导了多种神经系统疾病,如阿尔兹海默症(Alzheimer disease,AD)和肌萎缩侧索硬化症(Amyotrophic lateral sclerosis,ALS)[42]。目前,FGF9与抑郁的相关研究较少,有研究表明,FGF9可能作为抑郁的负调控因子与FGF2发挥拮抗作用[38]。抑郁症患者海马FGF9表达上调,这与尸检结果一致,且FGF9与FGF2和FGF受体(FGFR1、FGFR2、FGFR3)的表达呈负相关[10]。FGF9在大脑皮质干细胞中的下调会缩小增殖的星形池,最终减少星型胶质细胞的产生[39]。健康小鼠注射FGF9后会出现焦虑或抑郁行为,其海马组织FGF9的高水平在情绪焦虑障碍的发生发展中发挥重要作用,而FGF9敲除可减少焦虑行为[10]。然而,也有研究在抑郁小鼠的海马中检测到FGF9的下调[6],因此,FGF9究竟是抑郁行为的诱发因子还是保护因子仍然存在争议。FGF9的Y162C突变会负向调控小鼠的信息处理及社会记忆感知产生,暗示,FGF9基因改变可能会增加神经精神疾病发病的敏感性[44]。皮质醇处理可上调人体脑组织的FGF9水平并下调FGF2水平[109],另外,糖皮质激素作用下的FGF/FGFR/Akt/GSK3β通路紊乱可能是介导抑郁的潜在机制[6]。FGF9在神经精神疾病中的分子机制研究有限,因此,未来可聚焦于FGF9对细胞的影响,对神经递质及相关分子网络的调节等方向。

2.3 成纤维细胞生长因子22(FGF22)

FGF22与脑发育、突触形成以及神经发生等有关,是海马发育中兴奋性突触的决定因素,而海马是抑郁机制的重要脑区。抑郁症患者血清FGF22降低,且FGF22水平与IL-1β水平呈负相关;应激大鼠侧脑室注射FGF22后,其海马IL-1β表达减少,且海马细胞凋亡率也得到改善,这意味着FGF22在缓解抑郁过程中发挥重要作用,并可能由IL-1β表达下调所介导[137]。FGF22敲除小鼠表现出抑郁症状,但并未出现焦虑、认知及运动方面的差异,表明,FGF22与抑郁有关,也意味着在大脑特定脑区中激活FGF22,用于治疗或减少以应激和情绪反应为主的疾病患病风险(如抑郁症等)有望成为可能[132]。鉴于FGF22是一种针对海马CA3远端区域的目标派生信号,FGF22敲除鼠突触小泡密度的减少,可作为对CA3区网络活动变化的适应以及体内突触释放率和体外短期抑郁强度的长期调节器[95]。此外,FGF22还可调节兴奋性突触前末端组织,FGF22在CA3椎体神经元中的表达失衡或缺乏都会影响突触间的平衡,进而导致多种神经系统障碍(如自闭症和精神分裂症)的发生[122]。FGF22信号可反馈性诱导胰岛素样生长因子-2(insulin-likegrowthfactor2,IGF-2)的表达,促进突触前末端的稳定性,FGF22-IGF2通路介导的突触稳定性不足,极有可能参与抑郁发病机制[121]。

2.4 运动与成纤维细胞生长因子家族

有关运动改善神经系统疾病的机制研究,涉及FGF的文献相对匮乏。运动可增加海马FGF2水平,还可增加多个脑区的FGF2免疫活性[48]。自主运动提高了雪旺氏细胞介导的FGF2基因治疗对轴突再生的作用,而这可能是因为FGF2提高了腰椎脊髓和被移植的雪旺氏细胞背根神经节中再生相关蛋白(GAP-43和SYN)的水平,运动后增加FGF2基因治疗提高了有髓鞘轴突的再生[53]。抗阻运动却降低了老年小鼠骨骼肌FGF2的蛋白水平[67]。肌肉FGF2水平对卫星细胞的分化极其关键,肌肉组织和脑组织间的对话可能为运动介导FGF2发挥对脑的积极效应提供通路,由此,FGF2可能成为运动抗抑郁的重要媒介。本课题组研究发现,氟西汀或运动干预可上调抑郁小鼠的FGF9水平,且FGF9/AKt/GSK3β/β-catenin通路紊乱可能是介导抑郁发生的一种信号机制[6]。基于FGF9与FGF2的拮抗作用,未来研究尚需对FGFs在运动抗抑郁过程中的表现、作用及机制进行深入探讨。目前还未有实验对FGF22在运动抗抑郁中的表现进行例证,未来研究除围绕FGF22本身展开外,还可以FGF22结合蛋白及其受体为切入点,以期明确FGF22与抑郁症之间的关系,FGF22在介导运动抗抑郁过程中的作用,从而为抑郁症等精神障碍性疾病的治疗提供新的治疗靶点和思路。

3 生神经细胞因子家族

生神经细胞因子是一类可发挥神经营养作用的细胞因子,目前国内研究使用这一归类名称较少,但实际上其在国外研究中却由来已久,该家族因子主要包括睫状神经营养因子(ciliary neurotrophic factor,CNTF)、IL-6、白血病抑制因子(leukemia inhibitory factor,LIF)[14],这些因子是可以进行免疫应答的小分子蛋白质,它们参与细胞的增殖和分化,调控突触可塑性以及神经系统的发育,并可能通过与5-HT系统、HPA轴及神经可塑性间的作用影响抑郁病程,是精神障碍性疾病发病的一类重要影响因子[15]。

3.1 睫状神经营养因子(CNTF)

CNTF是一种从鸡胚睫状神经元中分离出的多效能因子,广泛分布于中枢和外周神经系统,支持多种类型神经元和神经胶质细胞的存活,且对神经元和少突胶质细胞等都具有潜在的营养作用[96]。临床研究发现,将封装的CNTF胶囊植入亨廷顿患者右脑室2年后取出发现,有1/8的患者会被诊断为患有抑郁症,提示,CNTF可能是与抑郁相关的神经营养因子之一,可作为抑郁的外周标志物[12]。CNTF缺失小鼠表现出焦虑行为增加,在习得性无助实验条件下,小鼠更容易出现抑郁行为,这些变化与海马5-HT及其受体1A的表达相关,表明,内源性CNTF对海马功能结构的维持起关键作用,因此,其对啮齿类动物的焦虑、抑郁等情感行为存在重要影响[100]。外源性CNTF虽不能灵敏调控神经递质的释放,但却能保护成熟终板免于活动诱发的突触抑制[43]。CNTF对靶细胞发挥作用时涉及到一个由3个受体亚基组成的受体复合体,包括糖蛋白gp130、LIFRβ及CNTFRα,CNTF-CNTFR可能通过gp130/LIFRβ受体信号,激活Janus酪氨酸激酶2(Janus kinase 2,JAK2)/转录激活因子(signal transducer and activator of transcription,STAT)通路实现信号转导[78],Pasquin等[97]提出,CNTF也可能是通过该通路对神经退行性疾病产生积极影响的。由此推论,CNTF通过CNTFR/gp130/LIFRβ/JAK/STAT通路介导的神经递质释放和突触保护,成为CNTF介导抑郁的一种可能性,不过这还有待后续实验的进一步论证。

运动可增强大鼠下丘脑信号转导和STAT3的磷酸化,降低细胞因子信号转导抑制因子3(suppressor of cytokine signaling 3,SOCS3)的表达;JAK2/STAT3是瘦素(leptin)信号的主要通路,而CNTF下游信号与leptin相似,其中最突出的是STAT3[78,94]。在肥胖、糖尿病动物模型中,慢性注射CNTF可明显改善糖脂代谢,调控新陈代谢。本课题组曾提出,抑郁症与糖尿病共病的运动干预机制可能是经由瘦素受体(leptin receptor,LepRb)/炎性细胞因子(inflammatory cytokines,ICK)-SOCS3通路的瘦素抵抗[2]。CNTF可通过促进GAP-43的表达改善神经突生长、神经元发育并抑制其凋亡,而这些作用是经由JAK2/STAT3和PI3K/AKT实现的。SOCS3与LepRb相互影响且可抑制JAK2/STAT3信号通路,因此,CNTF的下游信号通路受到影响[80]。鉴于CNTF及其受体在肌肉中的丰富表达,结合抑郁的代谢假说,以及CNTF可防止神经元发生退行性变化的强效,推测CNTFR/JAK2/STAT3可能介导了CNTF在运动抗抑郁过程中的机制,而LepRb及SOCS3等都会影响这一过程。CNTF及其受体极有可能在运动抗抑郁过程中发挥重要作用,未来对于CNTF在运动抗抑郁过程中的进一步深入研究,将为抑郁症及其共病的研究和治疗带来新的希望。

3.2 白介素-6(IL-6)

IL-6主要由巨噬细胞和单核细胞刺激分泌,一般多认为它是一种促炎性细胞因子,在免疫反应的启动维持中发挥重要作用,既往研究还发现,IL-6可增加神经营养因子和神经生长因子的分泌[68],因此,包括IL-6在内的许多免疫介质还有另外一个身份,那就是作为生神经细胞因子家族的一员,在脑发育及神经退行性疾病中发挥作用[117]。考虑到炎症与多种神经系统疾病有关,基于抑郁的“细胞因子假说”,抑郁可被看作是一种精神神经系统免疫失调疾病。元分析显示,抑郁症患者血清IL-6浓度明显升高,且血清IL-6浓度与抑郁程度呈正相关[142]。患者进行抗抑郁药物治疗后血清IL-6明显下降,且多种抗抑郁药物的作用机理与IL-6密切相关。IL-6活性增加与难治性抑郁有关,而血浆IL-6水平则可作为抑郁症患者使用选择性5-羟色胺再摄取抑制剂(selective serotonin reuptake inhibitor,SSRI)或选择性去甲肾上腺素再摄取抑制剂(selective norepinephrine reuptake inhibitor,SNRI)类抗抑郁药的指示物[141]。动物研究发现,IL-6通过激活ERK1/2介导了大鼠在强迫游泳中抑郁行为的改变[135]。IL-6与其受体结合后,激活下游的酪氨酸激酶2(tyrosine kinase 2,TYK2)和JAK1/2,导致STAT3磷酸化并调节5-HT转运和5-羟色胺转运体(serotonin transporter,SERT)基因转录[72],进而影响动物抑郁行为。与此相似,应激大鼠下丘脑IL-6与IL-6R或gp130R结合后也激活了JAK/STAT3信号通路,并对HPA轴功能有重要影响,因此,可把HPA轴看作是IL-6与应激之间的反应中介之一[47]。综上,IL-6可能通过相关受体经由TYK2/JAK/STAT3激活SERT或ERK1/2通路,调节单胺类神经递质水平或HPA轴功能,进而介导抑郁的发生。

规律的运动锻炼具有一定的抗炎作用,运动可改变IL-6水平、缓解炎症反应,从而改善抑郁的严重程度[106]。IL-6可激活小鼠肌肉和脂肪中AMP激活的蛋白激酶(AMP-activated protein kinase,AMPK)及其靶分子乙酰辅酶A羧化酶(Acetyl-CoA carboxylase,ACC),即增加其磷酸化程度,这些组织中AMPK活性的增加即为对运动的适应[64]。IL-6调控了皮下脂肪组织中急性运动诱导的leptin表达下调,改变了IL-6Rα和过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)的mRNA水平[19]。本课题组曾提出,LepRb/ICK-SOCS3通路的leptin抵抗可能介导了抑郁症与糖尿病共病的运动干预机制[2],且与IL-6同家族的IL-1β诱导的leptin水平增加可增强α1-肾上腺素受体(α1-adrenergic receptor,α1-AR)介导的抑郁行为[74]。由此可提出一种尚需证实的可能性,即运动改变IL-6和leptin水平,与α1-AR或LepRb结合后经由ICK-SOCS3介导对抑郁的调控。

3.3 白血病抑制因子(LIF)

LIF因可抑制小鼠M1白血病细胞的增殖而得名,此外,它也是一种涉及交感神经、感觉和运动神经元存活、分化及再生的多效细胞因子,在神经系统中表现活跃,因此,被归为生神经细胞因子家族的一员[102]。近年研究认为其在中枢神经系统损伤病变中发挥神经保护和调节作用,可修复AD和抑郁等神经精神疾病[108]。AD患者大脑LIF水平升高,分析认为Aβ诱导的细胞分化和随之产生的LIF可激活小胶质细胞并增强AD的炎症反应,而LIF生成的增加却又保护神经元抵抗Aβ诱导的神经毒性,因此,LIF是促炎因子还是抗炎因子至今难以定论[105, 116]。临产期小鼠暴露于皮质酮可引起子代抑郁行为,并伴随下丘脑LIF表达上调[99];LIF基因敲除小鼠在强迫游泳中抑郁行为减少[98],提示,LIF可能成为抑郁病理的候选因子之一。新生大鼠皮下注射LIF后,在青春期阶段表现出活动度下降,且在青春期或之后的声音惊吓反应中表现为非正常脉冲抑制,却在主动回避测试中表现出正常的学习能力,这可能是由于LIF诱导STAT3磷酸化,并增加新皮层胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)的免疫反应性[131]。TNF-α是与抑郁密切关联的炎症因子之一,TNF-α通过LIF自分泌激活STAT3并促进星形胶质细胞再生,TNF-α还可增加卵巢白阳性细胞和人体神经祖细胞中LIF的表达,暗示了LIF与抑郁相关的可能性[75]。LIF通过LIFRβ/gp130受体,经由STAT3、MAPK、PI3K通路分别调控小鼠胚胎干细胞的自我更新、细胞分化和细胞存活[50],其中,gp130也是IL-6的受体之一。LIF/JAK/STAT3这一信号通路涉及诱导多能干细胞再生,雌激素相关受体β(estrogen-related receptor β,ESRRB)是该通路下游的重要调控因子[58]。LIF作为情绪和炎性应激的反馈,其机制涉及HPA轴、免疫系统及因子间相互影响等,在子代发育过程中尤为敏感,这可能为子代抑郁研究提供针对性靶点,因此,LIF是抑郁研究中不容忽视的重要因子之一。

LIF是运动诱导的肌肉因子,由体外肌细胞和骨骼肌产生释放,是肌肉卫星细胞分化和肌肉再生的关键调控因子。运动时骨骼肌可能因细胞内Ca2+浓度的震荡而有效上调LIF的表达水平[21],肌细胞Ca2+可能通过Ca2+/活化T细胞核因子(nuclear factor of active T cells,NFAT)/LIF信号激活LIF[20]。临床研究发现,向心运动后即刻骨骼肌LIF的mRNA增加且在恢复过程中逐渐下降,但其蛋白表达却未发生一致改变[20]。力量和耐力训练后,运动员血浆LIF浓度升高,且两种运动类型间LIF浓度也有明显差异[62]。然而,动物研究却发现,自主跑轮运动后小鼠LIF的mRNA表达减少[20]。间歇运动可上调心肌梗死模型大鼠肌肉LIF/LIFR的表达,并激活STAT3使其磷酸化[59]。运动可调控LIF,这也被视为肌肉对运动的一种适应。鉴于同家族CNTF、IL-6的运动抗抑郁机制均涉及STAT3,推测LIF亦有可能介入运动抗抑郁机制。有关运动对LIF影响的研究尚未形成定论,LIF在运动抗抑郁机制方面的研究存在其必要性和特殊性,需进一步补充完善。

4 胶质细胞源性神经营养因子家族

胶质细胞源性神经生长因子家族成员包括胶质细胞源性神经营养因子(glial cell line-derived neurotriphic factor,GDNF)、artemin(ARTN)、persephin(PSPN)和neurturin(NRTN),是对中枢和外周神经元存活发挥潜在作用的蛋白质,具有神经保护和促进神经再生的作用,其可支持多巴胺能、感觉、运动、海马、基底前脑、肠、交感神经和副交感神经元等多种神经元群体[113]。

4.1 胶质细胞源性神经营养因子(GDNF)

GDNF是由胶质细胞衍生出的神经营养因子,对多巴胺神经元、运动神经元、感觉神经元有明显的促再生作用,因其可预防神经元退化,促进神经元存活的强效,目前在帕金森病(Parkinson disease,PD)和AD等神经退行性疾病的治疗领域研究颇丰,其中一些已应用至临床阶段。研究已发现,抑郁症患者GDNF水平下降,治疗后恢复正常,且GDNF水平与抑郁得分呈负相关。因此,GDNF可作为抑郁的外周标志物,GDNF稳态控制可能成为抑郁治疗的新靶点[34]。动物研究发现,应激所致抑郁通过机体反馈调节作用使大鼠海马GDNF水平升高,而氟西汀对GDNF水平无明显改变[8]。这可能由于GDNF在几个神经系统中都有所作用,也可能源自受损大脑的适应性反应,具体原因还需进一步论证。应激还可导致GDNF启动子的DNA甲基化和MeCP2的募集,不同焦虑程度下小鼠MeCP2的募集分子也是不同的,MeCP2募集CREB可激活GDNF的转录,MeCP2募集HDAC2却抑制GDNF的转录,这可能是其最终导致焦虑和抑郁行为的原因[85]。增加星型胶质细胞中基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)的活性会使GDNF表达增加,且MMP-3可激活MMP-9,MMP-9可调节细胞内受体酪氨酸激酶(receptor tyrosine kinases,RTKs)和ERK信号,也对FGF2流出和FGFR激活起到至关重要作用,由此研究者提出,MMP-9/RTKs/ERK及MMP-9/FGF2/FGFR可能会使GDNF表达增加,并成为一种抗抑郁的治疗路径[9]。此外,GDNF也可能经由GDNF家族受体α-1(GDNF family receptor α1,GFRα1)/神经细胞粘附分子(neural cell adhesion molecule,NCAM)/MAPK或GFRα1/NCAM/AKT、GFRα1/ NCAM/RET(RTKs家族成员)等通路发挥神经保护作用[83]。GDNF与认知和情感都密切相关,其水平改变可作为抑郁诱发因素之一,也可理解为是对抑郁的适应不良变化,受体、激酶等因素均可能影响其表达。

4.2 ARTN、PSPN和NRTN

ARTN是一种在中脑腹侧多巴胺能神经元结构发育和可塑性中发挥重要作用的强有力神经营养因子[144]。抑郁状态下,患者外周血细胞中GDNF和ARTN的mRNA表达水平降低,但并未在BD患者中发现这些表达的改变,表明,GDNF和ARTN表达水平的变化与抑郁的病理机制有关,并可能是状态依赖式的[90]。ARTN处理同样会诱发小鼠产生剂量依赖式的抗抑郁表现[33]。且ARTN与GFRα3或RET结合后可能诱导大鼠受损轴突的长距离再生,因此,ARTN内在通路对中枢神经系统轴突再生治疗是有益的[133]。PSPN和NRTN与GDNF一样,对多巴胺能神经元具有显著的营养、支持和损伤修复作用。PSPN是中枢神经系统兴奋性的有效调节剂,具有显著的神经保护活性,其对谷氨酸钙稳态受损的脑疾病AD与PD等均有治疗效果[123]。研究发现,PSPN能预防体内多巴胺能神经元的退行性病变,通过保护多巴胺能神经元,对6-羟基多巴胺(6-hydroxydopanine,6-OHDA)诱导的PD模型大鼠发挥神经保护作用[139]。NRTN在促进多巴胺能神经元存活、部分外周神经元以及胶质细胞的分化方面发挥着重要的生理作用[3],其在多巴胺能神经元中过度表达,可诱导慢性6-OHDA损伤大鼠黑质纹状体多巴胺能系统突触前和突触后的结构改变,促进神经突生长[107]。目前,该家族因子主要集中于PD疾病治疗方面的研究,关于抑郁症的研究较少,但鉴于该家族因子均参与促进成熟海马神经元的皮质发育、功能活动及维持,提示,除GDNF外,该家族因子ARTN、PSPN和NRTN也可能与抑郁病理及治疗有关[103]。

4.3 运动与胶质细胞源性神经营养因子家族

研究发现,运动可影响GDNF水平,低强度有氧跑台运动可明显升高血浆、神经及肌肉的GDNF水平,并诱导神经再生[93]。耐力运动可增加比目鱼肌和趾长伸肌GDNF表达,其表达与神经肌肉接头的形态学变化是活动依赖性的,且运动强度的变化可能会导致其变化程度的不同[52]。生长期大鼠进行非自主运动,其脊髓GDNF蛋白含量出现6倍增加,游泳运动使其出现3倍增加,自主跑步运动后呈双倍增加[84]。运动可使5-HT的表达增加,而5-HT可由5-HTR介导的FGFR2反式激活后经MEK(MAPK激酶)/ERK/CREB信号调控GDNF表达[127]。身体活动可刺激神经营养因子的产生和释放,通过减弱氧化应激和抑制免疫过程,从而阻挡与多巴胺神经元有关的神经退行性疾病,适度身体活动更好的支持了神经退行性疾病的药理学治疗[92]。虽未见GDNF介导运动抗抑郁的文献,但鉴于GDNF与多巴胺能神经元和运动神经元的关联,可推断GDNF参与了运动对抑郁的调控。运动训练可阻止神经病理性疼痛的发展,同时使GDNF和ARTN水平正常化[32]。交感神经元和多巴胺神经元均与运动密切相关,ARTN是感觉和交感神经元的重要存活因子,且ARTN也可能通过激活GFRa1/RET的相关通路支持多巴胺能中脑神经元[13]。PGC-1α的骨骼肌转导可增加NRTN的分泌以及神经肌肉接头的形成和大小,由此认为NRTN可能是肌肉到运动神经元逆向信号的中介物[86]。GDNF家族神经营养因子在运动方面的研究不多,但据目前的研究结果来看,部分家族成员已被发现与抑郁相关,且对运动神经元和多巴胺能神经元受损的神经退行性疾病表现出较强的调控作用,因此,考虑该家族因子同样有可能参与了运动对抑郁的调控,仍需进一步研究证实。

5 其他神经营养因子

5.1 血管内皮生长因子(VEGF)

VEGF可促进海马神经发生及内外信号转导,发挥神经保护作用并影响突触传递,而抑郁发病与海马神经发生相关。基因多态性临床研究发现,VEGF rs2010963可增加重度抑郁发病风险[55],VEGF rs4416670也与抑郁发病风险的增加相关[136]。重度抑郁和双相情感障碍躁狂发作期患者的VEGF水平升高,分析认为,VEGF的这种改变可能与它在情绪障碍中的神经保护作用有关[76]。精神抑郁症患者miR-126-3p、miR-106a-5p和VEGFA水平升高,电休克治疗后全血miR表达恢复正常,其共同靶点VEGFA明显降低[71]。抑郁或焦虑患者氯胺酮治疗后,其血清VEGF水平降低[40]。动物研究也发现,抗抑郁药可降低应激小鼠海马VEGF水平[51]。VEGF可降低大脑NE和5-HT水平,VEGF依赖的抗抑郁反应涉及单胺能系统,尤其是NE系统[129]。VEGF在小鼠海马神经元中靠NMDA型谷氨酸受体介导突触后反应增加,并诱发NR2B和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid, AMPA)受体的快速重新分布,随后激活钙调素激活激酶II(calcium/ calmodulin-dependent protein kinase II,CaMKII)和PKC。此外,神经元沉默VEGFR2的表达会损害海马突触可塑性和情感记忆[30]。由此推测,VEGF作为谷氨酸受体突触功能的关键调控者有望成为新的抑郁治疗靶点。

运动可下调VEGF水平,提示,运动对抑郁的改善可能由VEGF介导。受试者运动后前额叶和大脑颞叶BDNF和VEGF水平间呈负相关,这也提示,血液中的VEGF水平极有可能成为像BDNF一样的抑郁外周标志物[77],且有氧抗阻联合运动对血液VEGF水平的降低作用比单一运动形式更加明显[41]。急性运动可增加VEGF受体fms样酪氨酸激酶-1(fms-like tyrosine kinase-1,Flt-1)及其mRNA表达,Flt-1随后可能与PI3K结合刺激MAPK和纤溶酶原激活剂(plasminogen activator,PA),且NO在运动对Flt-1基因的调控中扮演了重要角色[46]。运动可治疗应激小鼠抑郁行为,这可能是VEGF经其另一受体胎肝激酶-1(fetal liver kinase-1,FIK-1)介导的[70]。机械牵拉使VEGF的mRNA和蛋白表达增加可能是突触神经元对牵拉的一种适应,由NGF/CNTF/TrkA通路经低氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)的表达来进行调控[111]。VEGF是运动抗抑郁的重要因子,相关信号FIK-1、Flt-1/PI3K、NGF/CNTF/TrkA/HIF-1α等均可能参与到了VEGF的运动抗抑郁调控机制中。

5.2 胰岛素样生长因子-1(IGF-1)

IGF-1是一种分子量较小的多肽氨基酸,具有神经营养、神经发生、神经保护等功效,对中枢神经系统的发育成熟及细胞的生长、存活和分化具有神经内分泌调节作用,因此,IGF-1可能参与了诸如抑郁等情感性障碍疾病的病理过程[118]。抑郁症患者血清IGF-1水平降低,药物治疗后血清IGF-1上调,且IGF-1水平变化与皮质酮变化显著相关[73]。但也有研究发现,抑郁焦虑患者血浆IGF-1水平更高,抗抑郁药物使用者更低,这可能是一种受损神经发生的代偿机制[18]。对老年抑郁症患者的研究发现,低浓度IGF-1可增加女性患者重度抑郁的发病,而适中浓度的IGF-1可减少男性患者轻度抑郁的发病[130]。IGF-1可减少炎性标志物的表达,促炎性细胞因子和肾上腺素是外周抑制IGF-1的主要因素[118]。IGF-1与受体IGF-1R结合后经MEK1/2/ERK1/2通路或者通过与胰岛素受体底物-1(insulin receptor substrate-1,IRS-1)结合后经PI3K/AKT通路影响细胞存活,另一方面,通过雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)影响蛋白质合成,或通过抑制GSK3β经β-catenin调节细胞因子表达,而PI3K/AKT/GSK3/ mTOR通路与精神疾病密切相关,因此,Szczsny等提出脑内IGF-1信号可调控精神疾病[69,118]。IGF-1可增强BDNF的合成和表达,二者均能提高大脑神经存活并增强突触可塑性,因此,探究IGF-1与抑郁的关系十分必要[124]。

运动对抑郁有改善作用,IGF-1可能是调控因素之一。抗阻运动后老年受试者焦虑抑郁风险降低,并伴随血清IGF-1水平升高[23]。应激小鼠经IGF-1治疗后抑郁行为减少,外周抗IGF-1注射可抑制运动的抗抑郁效果,说明,IGF-1介导了运动的抗抑郁机制[35]。运动对脑功能的影响包括改善认知和减轻焦虑,主要取决于IGF-1的循环水平,且与海马神经发生的增加有关[125]。中枢神经系统摄取外周的IGF-1对于运动和抗抑郁药诱导的海马BDNF表达升高及神经元存活和可塑性是至关重要的,且外周抗IGF-1处理可逆转运动及抗抑郁药诱导的BDNF mRNA和蛋白表达的增加,这意味着运动可能依靠外周IGF-1参与抑郁调节[25]。也有研究并未发现任何因运动而导致的VEGF、IGF/IGF结合蛋白或BDNF明显增加,这可能是由于运动对这些因子的影响是瞬时的[82]。IGF-1参与了运动诱导的抗抑郁活动,但具体机制还有待进一步明晰,其与BDNF、VEGF等神经营养因子之间的相互作用和影响,也可成为未来研究的关注点和突破点。

6 小结与展望

抑郁的神经营养假说是抑郁病理机制中的重要假说之一,抑郁症患者表现出多种NTFs的表达上调或下调,环境变化(如应激等)、药物使用、表观遗传调控(如miRs等)均可影响NTFs表达,这些变化在诸如海马、下丘脑等情感相关脑区更为明显,而运动则能逆转或缓解这种异常表达,进而改善抑郁行为。本文综述了几种与抑郁密切相关的NTFs及其介导运动抗抑郁的可能机制(图1),运动可调节NTFs的表达水平,使其表达上调或下调。遗憾的是,运动对某些因子的调节作用尚存在争议或仍不明确,有待后续研究进一步补充完善。NTFs最终作用于神经元并发生一系列的信号转导,使得大脑神经可塑性增强、神经发生增加、细胞存活提高、HPA轴正常激活、单胺类神经递质平衡、中枢炎症缓解,从而实现与抑郁的对话机制。但仍有一些问题需进一步明确或深入探究:1)NTFs表达随抑郁严重程度的不同而不同,那么,如何量化这种相关关系;2)运动抗抑郁过程中,NTFs是重要的介导分子,那么,不同NTFs间是否存在交互影响,如果有,具体作用机制又是什么;3)运动对NTFs表达的改变是否存在“运动处方特异性”,即不同的运动方式、强度、时间等是否对NTFs有不同影响,从而导致对抑郁的改善程度也有所不同;4)某些NTFs在外周富集,那么,是否可筛选出这些外周营养因子作为抑郁症液体活检、运动干预的生物标记。这将会提高抑郁症的诊断准确率,并为研发抗抑郁药物提供新靶点,为制定个性化抑郁症运动干预策略提供参考依据和方法。随着研究的深入和拓展,NTFs在抑郁及运动抗抑郁版图中的机制网络将会逐渐得以完善,这将为抑郁症的研究与治疗提供更多可能性。

图1 神经营养因子介导运动抗抑郁的可能机制

Figure1. The Roles of Neurotrophic Factors in the Antidepressant Effects of Exercise

[1] 侯德仁,沙地克·沙吾提,邓锦凤,等. 意向运动疗法对大鼠脑缺血再灌注损伤后NT-3及GAP-43表达的影响[J]. 南方医科大学学报, 2011, 31(8): 1401-1404.

[2] 刘微娜,季浏. 抑郁症与糖尿病共病的运动干预机制——瘦素抵抗假说[J]. 体育科学, 2015, 35(12): 89-93.

[3] 孙秀,陈生弟. Neurturin和GFRα2研究进展[J]. 中国神经科学杂志, 2001, 17(4): 347-349.

[4] 佗婷婷. 慢性应激抑郁大鼠FGF2和VEGF表达以及相互作用[D]. 重庆: 第三军医大学, 2012.

[5] 王雪琦,由振东,赵小林,等. 抑郁症大鼠海马和顶叶皮质神经元NGF含量及其mRNA的表达[J]. 第二军医大学学报, 2002, 23 (6): 590-592.

[6] 夏杰. FGF9在氟西汀和运动改善抑郁中的作用机制研究[D]. 上海: 华东师范大学, 2017.

[7] 于芳,崔建梅,薄媛媛,等. 跑台运动对慢性应激抑郁大鼠行为学及海马CA1、CA3区NGF表达的影响[J]. 首都体育学院学报, 2015, 27(2): 185-191.

[8] 张晓斌,张志珺,谢春明,等. 氟西汀对抑郁模型大鼠海马区胶质细胞源性神经营养因子mRNA表达的影响[J]. 东南大学学报(医学版),2009, 28(3): 228-232.

[9] ABE H, HISAOKA-NAKASHIMA K, KAJITANI N,. The expression of glial cell line-derived neurotrophic factor mRNA by antidepressants involves matrix metalloproteinase-9 activation in rat astroglial cells[J]. Biochem Biophys Res Commun, 2016, 479(4): 907-912.

[10] AURBACH E L, INUI E G, TURNER C A,Fibroblast growth factor 9 is a novel modulator of negative affect[J]. Proc Natl Acad Sci U S A, 2015, 112(38): 11953-11958.

[11] BACHIS A, MALLEI A, CRUZ M I,. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons[J]. Neuropharmacology, 2008, 55(7): 1114-1120.

[12] BACHOUD-LEVI A C, DEGLON N, NGUYEN J P,. Neuroprotective gene therapy for Huntington's disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF[J]. Hum Gene Ther, 2000, 11(12): 1723-1729.

[13] BALOH R H, TANSEY M G, LAMPE P A,. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex[J]. Neuron, 1998, 21(6): 1291-1302.

[14] BAUER S. Cytokine control of adult neural stem cells[J]. Ann N Y Acad Sci, 2009, 1153(1): 48-56.

[15] BAUER S, KERR B J, PATTERSON P H. The neuropoietic cytokine family in development, plasticity, disease and injury[J]. Nat Rev Neurosci, 2007, 8(3): 221-232.

[16] BAUM P, VOGT M A, GASS P,. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology[J]. Int J Dev Neurosci, 2016, 50: 55-64.

[17] BJORKHOLM C, MONTEGGIA L M. BDNF - a key transducer of antidepressant effects[J]. Neuropharmacology, 2016, 102: 72-79.

[18] BOT M, MILANESCHI Y, PENNINX B W,. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users[J]. Psychoneuroendocrinology, 2016, 68: 148-155.

[19] BRANDT C, JAKOBSEN A H, ADSER H,. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice[J]. Acta Physiol (Oxf) , 2012, 205(2): 224-235.

[20] BROHOLM C, MORTENSEN O H, NIELSEN S,. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle[J]. J Physiol, 2008, 586(8): 2195-2201.

[21] BROHOLM C, PEDERSEN B K. Leukaemia inhibitory factor--an exercise-induced myokine[J]. Exerc Immunol Rev, 2010, 16(1): 77-85.

[22] CALLAGHAN C K, ROUINE J, O'MARA S M. Exercise prevents IFN-alpha-induced mood and cognitive dysfunction and increases BDNF expression in the rat[J]. Physiol Behav, 2017, 179: 377-383.

[23] CASSILHAS R C, ANTUNES H K, TUFIK S,. Mood, anxiety, and serum IGF-1 in elderly men given 24 weeks of high resistance exercise[J]. Percept Mot Skills, 2010, 110(1): 265-276.

[24] CAVIEDES A, LAFOURCADE C, SOTO C,. BDNF/NF-kappaB signaling in the neurobiology of depression[J]. Curr Pharm Des, 2017, 23(21): 3154-3163.

[25] CHEN M J, RUSSO-NEUSTADT A A. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent[J]. Growth Factors, 2007, 25(2): 118-131.

[26] CHENG Y, LI Z, KARDAMI E,. Neuroprotective effects of LMW and HMW FGF2 against amyloid beta toxicity in primary cultured hippocampal neurons[J]. Neurosci Lett, 2016, 632: 109-113.

[27] CHENG Y, RODRIGUIZ R M, MURTHY S R,. Neurotrophic factor-alpha1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone[J]. Mol Psychiatr, 2015, 20(6): 744-754.

[28] CHUNG J Y, KIM M W, BANG M S,. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise[J]. PLoS One, 2013, 8(3): e52461.

[29] COYLE J T, DUMAN R S. Finding the intracellular signaling pathways affected by mood disorder treatments[J]. Neuron, 2003, 38(2): 157-160.

[30] De ROSSI P, HARDE E, DUPUIS J P,. A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior[J]. Mol Psychiatr, 2016, 21(12): 1768-1780.

[31] DEDONI S, OLIANAS M C, INGIANNI A,. Interferon-beta inhibits neurotrophin 3 signalling and pro-survival activity by upregulating the expression of truncated TrkC-T1 receptor[J]. Mol Neurobiol, 2017, 54(3): 1825-1843.

[32] DETLOFF M R, SMITH E J, QUIROS M D,. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury[J]. Exp Neurol, 2014, 255(5): 38-48.

[33] DI CESARE M L, VIVOLI E, SALVICCHI A,. Antidepressant-like effect of artemin in mice: a mechanism for acetyl-L-carnitine activity on depression[J]. Psychopharmacology (Berl) , 2011, 218(2): 347-356.

[34] DINIZ B S, TEIXEIRA A L, MIRANDA A S,. Circulating glial-derived neurotrophic factor is reduced in late-life depression[J]. J Psychiatr Res, 2012, 46(1): 135-139.

[35] DUMAN C H, SCHLESINGER L, TERWILLIGER R,. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise[J]. Behav Brain Res, 2009, 198(2): 366-371.

[36] DUMAN R S. Neuronal damage and protection in the pathophysi-ology and treatment of psychiatric illness: stress and depression[J]. Dialogues Clin Neurosci, 2009, 11(3): 239-255.

[37] ELDOMIATY M A, ALMASRY S M, DESOUKY M K,. Voluntary running improves depressive behaviours and the struct-ure of the hippocampus in rats: A possible impact of myokines[J]. Brain Res, 2017, 1657: 29-42.

[38] EVANS S J, CHOUDARY P V, NEAL C R,. Dysregulation of the fibroblast growth factor system in major depression[J]. Proc Natl Acad Sci U S A, 2004, 101(43): 15506-15511.

[39] FALCONE C, FILIPPIS C, GRANZOTTO M,. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9[J]. Glia, 2015, 63(3): 412-422.

[40] FAN N, ZHANG M, XU K,. Serum level of vascular endothelial growth factor decreased in chronic ketamine abusers[J]. Drug Alcohol Depend, 2015, 152: 57-61.

[41] FERNANDEZ-GONZALO R, LUNDBERG T R, TESCH P A. Acute molecular responses in untrained and trained muscle subjec-ted to aerobic and resistance exercise training versus resistance training alone[J]. Acta Physiol (Oxf), 2013, 209(4): 283-294.

[42] GARCIA D Y E, HO A, DAMANI T,. Regulation of the heparan sulfate proteoglycan, perlecan, by injury and interleukin-1alpha[J]. J Neurochem, 1999, 73(2): 812-820.

[43] GARCIA N, SANTAFE M M, TOMAS M,. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation[J]. J Peripher Nerv Syst, 2012, 17(3): 312-323.

[44] GARRETT L, BECKER L, ROZMAN J,. Fgf9 (Y162C) Mutation alters information processing and social memory in mice[J]. Mol Neurobiol, 2017, 55(9): 1-16.

[45] GAUGHRAN F, PAYNE J, SEDGWICK P M,. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder[J]. Brain Res Bull, 2006, 70(3): 221-227.

[46] GAVIN T P, WAGNER P D. Attenuation of the exercise-induced increase in skeletal muscle Flt-1 mRNA by nitric oxide synthase inhibition[J]. Acta Physiol Scand, 2002, 175(3): 201-209.

[47] GIROTTI M, DONEGAN J J, MORILAK D A. Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress[J]. Psychoneuroendocrinology, 2013, 38(7): 1158-1169.

[48] GOMEZ-PINILLA F, DAO L, SO V. Physical exercise induces FGF-2 and its mRNA in the hippocampus[J]. Brain Res, 1997, 764(1-2): 1-8.

[49] GOMEZ-PINILLA F, ZHUANG Y, FENG J,. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation[J]. Eur J Neurosci, 2011, 33(3): 383-390.

[50] GRAF U, CASANOVA E A, CINELLI P. The role of the leukemia inhibitory factor (LIF) - pathway in derivation and maintenance of murine pluripotent stem cells[J]. Genes (Basel) , 2011, 2(1): 280-297.

[51] GRIZZELL J A, MULLINS M, IARKOV A,. Cotinine reduces depressive-like behavior and hippocampal vascular endothelial growth factor downregulation after forced swim stress in mice[J]. Behav Neurosci, 2014, 128(6): 713-721.

[52] GYORKOS A M, MCCULLOUGH M J, SPITSBERGEN J M. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise[J]. Neuroscience, 2014, 257(2): 111-118.

[53] HAASTERT K, YING Z, GROTHE C,. The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps[J]. Neurosci Lett, 2008, 443(3): 179-183.

[54] HAENISCH B, BILKEI-GORZO A, CARON M G,. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression[J]. J Neurochem, 2009, 111(2): 403-416.

[55] HAN D, QIAO Z, CHEN L,. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population[J]. J Affect Disord, 2017, 217: 295-298.

[56] HASHIKAWA N, OGAWA T, SAKAMOTO Y,. Time course of behavioral alteration and mRNA levels of neurotrophic factor following stress exposure in mouse[J]. Cell Mol Neurobiol, 2015, 35(6): 807-817.

[57] HONG Y P, LEE H C, KIM H T. Treadmill exercise after social isolation increases the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus, and improves depression-like behavior[J]. J Exerc Nutr Biochem, 2015, 19(1): 11-18.

[58] HUANG D, WANG L, DUAN J,. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming[J]. Biol Open, 2018, 7(1): 29264.

[59] JIA D, CAI M, XI Y,. Interval exercise training increases LIF expression and prevents myocardial infarction-induced skeletal muscle atrophy in rats[J]. Life Sci, 2018, 193: 77-86.

[60] JIANG H, CHEN S, LI C,. The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepres-sant treatment[J]. Transl Psychiatr, 2017, 7(4): e1079.

[61] JIANG P, DANG R L, LI H D,. The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress[J]. Evid Based Compl Alt Med, 2014, 2014(34): 729827.

[62] KAPILEVICH L V, ZAKHAROVA A N, KABACHKOVA A V,. Dynamic and static exercises differentially affect plasma cytokine content in elite endurance- and strength-trained athletes and untrained volunteers[J]. Front Physiol, 2017, 8: 35.

[63] KAREGE F, PERRET G, BONDOLFI G,. Decreased serum brain-derived neurotrophic factor levels in major depressed patients[J]. Psychiatr Res, 2002, 109(2): 143-148.

[64] KELLY M, KELLER C, AVILUCEA P R,. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise[J]. Biochem Biophys Res Commun, 2004, 320(2): 449-454.

[65] KERLING A, KUCK M, TEGTBUR U,. Exercise increases serum brain-derived neurotrophic factor in patients with major depressive disorder[J]. J Affect Disord, 2017, 215: 152-155.

[66] KEYAN D, BRYANT R A. Role of BDNF val66met polymorph-ism in modulating exercised-induced emotional memories[J]. Psychoneuroendocrinology, 2017, 77: 150-157.

[67] KIM J S, YOON D H, KIM H J,. Resistance exercise reduced the expression of fibroblast growth factor-2 in skeletal muscle of aged mice[J]. Integr Med Res, 2016, 5(3): 230-235.

[68] KISHIMOTO T. The biology of interleukin-6[J]. Blood, 1989, 74(1): 1-10.

[69] KITAGISHI Y, KOBAYASHI M, KIKUTA K,. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses[J]. Depress Res Treat, 2012, 2012(1): 752563.

[70] KIUCHI T, LEE H, MIKAMI T. Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice[J]. Neuroscience, 2012, 207(10): 208-217.

[71] KOLSHUS E, RYAN K M, BLACKSHIELDS G,. Peripheral blood microRNA and VEGFA mRNA changes following electroc-onvulsive therapy: Implications for psychotic depression[J]. Acta Psychiatr Scand, 2017, 136(6): 594-606.

[72] KONG E, SUCIC S, MONJE F J,. STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior[J]. Sci Rep, 2015, 5: 9009.

[73] KOPCZAK A, STALLA G K, UHR M,. IGF-I in major depression and antidepressant treatment response[J]. Eur Neurops-ychopharmacol, 2015, 25(6): 864-872.

[74] KUROSAWA N, SHIMIZU K, SEKI K. The development of depression-like behavior is consolidated by IL-6-induced activat-ion of locus coeruleus neurons and IL-1beta-induced elevated leptin levels in mice[J]. Psychopharmacology (Berl) , 2016, 233(9): 1725-1737.

[75] LAN X, CHEN Q, WANG Y,. TNF-alpha affects human cortical neural progenitor cell differentiation through the autocrine secretion of leukemia inhibitory factor[J]. PLoS One, 2012, 7(12): e50783.

[76] LEE B H, KIM Y K. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders[J]. J Affect Disord, 2012, 136(1-2): 181-184.

[77] LEE T M, WONG M L, LAU B W,. Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents[J]. Psychoneuroendocrinology, 2014, 39(1): 214-224.

[78] LEWIN G R, CARTER B D. Neurotrophic Factors[M]. Berlin: Springer-Verlag, 2014: 178-433.

[79] LIANG J, YUE Y, JIANG H,. Genetic variations in the p11/tPA/BDNF pathway are associated with post stroke depress-ion[J]. J Affect Disord, 2018, 226: 313-325.

[80] LIU H, LIU G, BI Y. CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro[J]. Neurosci Lett, 2014, 569(4): 110-115.

[81] LU J, XU Y, HU W,. Exercise ameliorates depression-like behavior and increases hippocampal BDNF level in ovariectomi-zed rats[J]. Neurosci Lett, 2014, 573(4): 13-18.

[82] MAASS A, DUZEL S, BRIGADSKI T,. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults[J]. Neuroimage, 2016, 131(2): 142-154.

[83] MAHEU M, LOPEZ J P, CRAPPER L,. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression[J]. Transl Psychiatr, 2015, 5(2): e511.

[84] MCCULLOUGH M J, GYORKOS A M, SPITSBERGEN J M. Short-term exercise increases GDNF protein levels in the spinal cord of young and old rats[J]. Neuroscience, 2013, 240(2): 258-268.

[85] MILLER C A. Stressed and depressed? Check your GDNF for epigenetic repression[J]. Neuron, 2011, 69(2): 188-190.

[86] MILLS R, TAYLOR-WEINER H, CORREIA J C,. Neurturin is a PGC-1alpha1-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation[J]. Mol Metab, 2018, 7(C): 12-22.

[87] MIZUI T, ISHIKAWA Y, KUMANOGOH H,. Neurobiolog-ical actions by three distinct subtypes of brain-derived neurotrop-hic factor: Multi-ligand model of growth factor signaling[J]. Pharmacol Res, 2016, 105: 93-98.

[88] MONTALBAN E, MATTUGINI N, CIARAPICA R,. MiR-21 is an Ngf-modulated microRNA that supports Ngf signaling and regulates neuronal degeneration in PC12 cells[J]. Neuromole-cular Med, 2014, 16(2): 415-430.

[89] OKUDAN N, BELVIRANLI M. Long-term voluntary exercise prevents post-weaning social isolation-induced cognitive impairm-ent in rats[J]. Neuroscience, 2017, 360: 1-8.

[90] OTSUKI K, UCHIDA S, WATANUKI T,. Altered express-ion of neurotrophic factors in patients with major depression[J]. J Psychiatr Res, 2008, 42(14): 1145-1153.

[91] PAE C U, MARKS D M, HAN C,. Does neurotropin-3 have a therapeutic implication in major depression?[J]. Int J Neurosci, 2008, 118(11): 1515-1522.

[92] PALASZ E, BAK A, GASIOROWSKA A,. The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson's disease[J]. Postepy Hig Med Dosw (Online) , 2017, 71(1): 713-726.

[93] PARK J S, HOKE A. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors[J]. PLoS One, 2014, 9(3): e90245.

[94] PARK S, JANG J S, JUN D W,. Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats[J]. Neuroen-docrinology, 2005, 82(5-6): 282-293.

[95] PASAOGLU T, SCHIKORSKI T. Presynaptic size of association-nal/commissural CA3 synapses is controlled by fibroblast growth factor 22 in adult mice[J]. Hippocampus, 2016, 26(2): 151-160.

[96] PASQUIN S, SHARMA M, GAUCHAT J F. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies[J]. Cytok-ine Growth Factor Rev, 2015, 26(5): 507-515.

[97] PASQUIN S, SHARMA M, GAUCHAT J F. Cytokines of the LIF/CNTF family and metabolism[J]. Cytokine, 2016, 82: 122-124.

[98] PECHNICK R N, CHESNOKOVA V M, KARIAGINA A,. Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene[J]. Neuropsychopharmacology, 2004, 29(4): 770-776.

[99] PECHNICK R N, KARIAGINA A, HARTVIG E,. Developmental exposure to corticosterone: behavioral changes and differential effects on leukemia inhibitory factor (LIF) and corticotropin-releasing hormone (CRH) gene expression in the mouse[J]. Psychopharmacology (Berl) , 2006, 185(1): 76-83.

[100]PERUGA I, HARTWIG S, MERKLER D,. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior[J]. Behav Brain Res, 2012, 229(2): 325-332.

[101]QIAO H, AN S C, XU C,. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression[J]. Brain Res, 2017, 1663: 29-37.

[102]QUARTA S, BAEUMER B E, SCHERBAKOV N,. Periph-eral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130[J]. J Neuro-sci, 2014, 34(39): 13222-13233.

[103]QUARTU M, SERRA M P, MANCA A,. Neurturin, persephin, and artemin in the human pre- and full-term newborn and adult hippocampus and fascia dentata[J]. Brain Res, 2005, 1041(2): 157-166.

[104]RAO S, MARTINEZ-CENGOTITABENGOA M, YAO Y,. Peripheral blood nerve growth factor levels in major psychiatric disorders[J]. J Psychiatr Res, 2017, 86: 39-45.

[105]RENSINK A A, GELLEKINK H, OTTE-HOLLER I,. Expression of the cytokine leukemia inhibitory factor and pro-apoptotic insulin-like growth factor binding protein-3 in Alzheimer's disease[J]. Acta Neuropathol, 2002, 104(5): 525-533.

[106]RETHORST C D, SOUTH C C, RUSH A J,. Prediction of treatment outcomes to exercise in patients with nonremitted major depressive disorder[J]. Depress Anxiety, 2017, 34(12): 1116-1122.

[107]REYES-CORONA D, VAZQUEZ-HERNANDEZ N, ESCOBE-DO L,. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion[J]. PLoS One, 2017, 12(11): e188239.

[108]RIEF W, PILGER F, IHLE D,. Immunological differences between patients with major depression and somatization syndrome[J]. Psychiatr Res, 2001, 105(3): 165-174.

[109]SALARIA S, CHANA G, CALDARA F,. Microarray analysis of cultured human brain aggregates following cortisol exposure: implications for cellular functions relevant to mood disorders[J]. Neurobiol Dis, 2006, 23(3): 630-636.

[110]SALMASO N, STEVENS H E, MCNEILL J,. Fibroblast growth factor 2 modulates hypothalamic pituitary axis activity and anxiety behavior through glucocorticoid receptors[J]. Biol Psychiatr, 2016, 80(6): 479-489.

[111]SAYGILI E, PEKASSA M, SAYGILI E,. Mechanical stretch of sympathetic neurons induces VEGF expression via a NGF and CNTF signaling pathway[J]. Biochem Biophys Res Commun, 2011, 410(1): 62-67.

[112]SHARMA N K, RYALS J M, GAJEWSKI B J,. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain[J]. Phys Ther, 2010, 90(5): 714-725.

[113]SIDOROVA Y A, SAARMA M. Glial cell line-derived neurotr-ophic factor family ligands and their therapeutic potential[J]. Mol Biol (Mosk) , 2016, 50(4): 589-598.

[114]SLEIMAN S F, HENRY J, AL-HADDAD R,. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybuty-rate[J]. Elife, 2016, 5: e15092.

[115]SMITH M A, MAKINO S, ALTEMUS M,. Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus[J]. Proc Natl Acad Sci U S A, 1995, 92(19): 8788-8792.

[116]SOILU-HANNINEN M, BROBERG E, ROYTTA M,. Expression of LIF and LIF receptor beta in Alzheimer's and Parkinson's diseases[J]. Acta Neurol Scand, 2010, 121(1): 44-50.

[117]STOLP H B. Neuropoietic cytokines in normal brain developm-ent and neurodevelopmental disorders[J]. Mol Cell Neurosci, 2013, 53(3): 63-68.

[118]SZCZESNY E, SLUSARCZYK J, GLOMBIK K,. Possible contribution of IGF-1 to depressive disorder[J]. Pharmacol Rep, 2013, 65(6): 1622-1631.

[119]TAHERICHADORNESHIN H, CHERAGH-BIRJANDI S, RAMEZANI S,. Comparing sprint and endurance training on anxiety, depression and its relation with brain-derived neurotr-ophic factor in rats[J]. Behav Brain Res, 2017, 329: 1-5.

[120]TANG M M, LIN W J, ZHANG J T,. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogen-esis induced by neuroinflammation[J]. Brain Behav Immun, 2017, 66: 322-331.

[121]TERAUCHI A, JOHNSON-VENKATESH E M, BULLOCK B,. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain[J]. Elife, 2016, 5: e12151.

[122]TERAUCHI A, JOHNSON-VENKATESH E M, TOTH A B,. Distinct FGFs promote differentiation of excitatory and inhibitory synapses[J]. Nature, 2010, 465(7299): 783-787.

[123]TOMAC A C, AGULNICK A D, HAUGHEY N,. Effects of cerebral ischemia in mice deficient in Persephin[J]. Proc Natl Acad Sci U S A, 2002, 99(14): 9521-9526.

[124]TORRES-ALEMAN I. Toward a comprehensive neurobiology of IGF-I[J]. Dev Neurobiol, 2010, 70(5): 384-396.

[125]TREJO J L, LLORENS-MARTIN M V, TORRES-ALEMAN I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis[J]. Mol Cell Neurosci, 2008, 37(2): 402-411.

[126]TSENG P T, CHEN Y W, TU K Y,. State-dependent increase in the levels of neurotrophin-3 and neurotrophin-4/5 in patients with bipolar disorder: A meta-analysis[J]. J Psychiatr Res, 2016, 79: 86-92.

[127]TSUCHIOKA M, TAKEBAYASHI M, HISAOKA K,. Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat C6 glioma cells[J]. J Neurochem, 2008, 106(1): 244-257.

[128]TURNER C A, CALVO N, FROST D O,. The fibroblast growth factor system is downregulated following social defeat[J]. Neurosci Lett, 2008, 430(2): 147-150.

[129]UDO H, HAMASU K, FURUSE M,. VEGF-induced antidepressant effects involve modulation of norepinephrine and serotonin systems[J]. Behav Brain Res, 2014, 275(9): 107-113.

[130]VAN VARSSEVELD N C, VAN BUNDEREN C C, SOHL E,. Serum insulin-like growth factor 1 and late-life depression: a population-based study[J]. Psychoneuroendocrinology, 2015, 54: 31-40.

[131]WATANABE Y, HASHIMOTO S, KAKITA A,. Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats[J]. Neurosci Res, 2004, 48(3): 345-353.

[132]WILLIAMS A J, YEE P, SMITH M C,. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice[J]. Behav Brain Res, 2016, 307: 11-17.

[133]WONG L E, GIBSON M E, ARNOLD H M,. Artemin promotes functional long-distance axonal regeneration to the brainstem after dorsal root crush[J]. Proc Natl Acad Sci U S A, 2015, 112(19): 6170-6175.

[134]WRANN C D, WHITE J P, SALOGIANNNIS J,. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway[J]. Cell Metab, 2013, 18(5): 649-659.

[135]WU T H, LIN C H. IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions[J]. Behav Brain Res, 2008, 193(2): 183-191.

[136]XIE T, STATHOPOULOU M G, DE ANDRES F,. VEGF-related polymorphisms identified by GWAS and risk for major depression[J]. Transl Psychiatr, 2017, 7(3): e1055.

[137]XU Y H, YU M, WEI H,. Fibroblast growth factor 22 is a novel modulator of depression through interleukin-1beta[J]. CNS Neurosci Ther, 2017, 23(11): 907-916.

[138]YEH Y W, KUO S C, CHEN C Y,. Harm avoidance involved in mediating the association between nerve growth factor (NGF) gene polymorphisms and antidepressant efficacy in patients with major depressive disorder[J]. J Affect Disord, 2015, 183: 187-194.

[139]YIN X F, XU H M, JIANG Y X,. Lentivirus-mediated Persephin over-expression in Parkinson's disease rats[J]. Neural Regen Res, 2015, 10(11): 1814-1818.

[140]YING Z, ROY R R, EDGERTON V R,. Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord[J]. Brain Res, 2003, 987(1): 93-99.

[141]YOSHIMURA R, HORI H, IKENOUCHI-SUGITA A,. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression[J]. Prog Neuropsychopharmacol Biol Psychiatr, 2009, 33(4): 722-726.

[142]YOUNG J J, BRUNO D, POMARA N. A review of the relationship between proinflammatory cytokines and major depre-ssive disorder[J]. J Affect Disord, 2014, 169: 15-20.

[143]YOUNG W. Review of lithium effects on brain and blood[J]. Cell Transplant, 2009, 18(9): 951-975.

[144]ZIHLMANN K B, DUCRAY A D, SCHALLER B,. The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesenceph-alic dopaminergic neurons[J]. Brain Res Bull, 2005, 68(1-2): 42-53.

Mediating Mechanism of Neurotrophic Factors in Antidepressant Effects of Exercise

LIU Wen-bin1,2, LIU Wei-na1,2, QI Zheng-tang1,2

1.Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China;2.School of Physical Education and Health Care, East China Normal University, Shanghai 200241, China.

Neurotrophic factors play a role in the development, survival and apoptosis of neurons, because of its important role in the neurodevelopment and neuroplasticity, it has long been paid much attention in the field of neuroscience. The neurotrophic hypothesis of depression believed that depression can lead to changes in the expression level of neurotrophic factors, the serum level and brain region expression of various neurotrophic factors in patients with depression are significantly different from the healthy individuals, this suggests that neurotrophic factors may become a new marker of depression. Exercise can regulate neuroplasticity, neurogenesis, cell survival, hypothalamic-pituitary-adrenal axis activity, monoamine neurotransmitters, central inflammation and then play antidepressant effects by changing the expression level of many neurotrophic factors, including nerve growth factor gene family, fibroblast growth factor family, neuropoietic cytokine family, glial cell line-derived neurotrophic factor family and other neurotrophic factors such as vascular endothelial growth factor and insulin like growth factor-1. This paper reviews mediating mechanism of neurotrophic factors in antidepressant effects of exercise, we hope to find “peripheral neurotrophic factors” as depression biomarkers used for biopsy and exercise intervention, and the findings are supposed to suggest more possibilities for research and treatment of depression .

G804.5

A

1000-677X(2018)10-0054-13

10.16469/j.css.201810007

2018-07-28;

2018-09-27

国家自然科学基金资助项目(31871208);上海市自然科学基金资助项目(18ZR1412000);中央高校基本科研业务费专项资金资助项目(2017ECNU-HWFW026); “青少年健康评价与运动干预”教育部重点实验室建设项目(40500-541235-14203/004)。

刘文彬,女,在读硕士研究生,主要研究方向为抑郁症的运动干预,Email:liuwenbin1993@126.com。

刘微娜,女,副教授,博士,博士研究生导师,主要研究方向为抑郁症的运动干预,E-mail:weina1978@126.com。

猜你喜欢

抗抑郁海马神经元
给大脑补充营养素,协同药物抗抑郁
海马
AI讲座:神经网络的空间对应
仿生芯片可再现生物神经元行为
这个神经元负责改变我们的习惯
研究人员精确定位控制饮酒的神经元
萌萌哒之长满痘痘的豆丁海马
孕妇服用抗抑郁药后代患孤独症概率翻倍
抗抑郁药与自闭症
抗抑郁药的合理使用