cAMP反应元件结合蛋白在头痛与抑郁中的研究现状*
2017-12-18张明洁邱恩超于生元
代 维 张明洁 邱恩超 董 钊 于生元△
(1 解放军总医院第一附属医院神经内科,北京100048;2 中国人民解放军总医院神经内科,北京100039)
•综 述•
cAMP反应元件结合蛋白在头痛与抑郁中的研究现状*
代 维1张明洁2邱恩超1董 钊2于生元2△
(1解放军总医院第一附属医院神经内科,北京100048;2中国人民解放军总医院神经内科,北京100039)
目的:cAMP (cyclic adenosine monophosphate, 环磷腺苷)反应元件结合蛋白(cAMP response element binding protein, CREB)是一种转录因子,其蛋白家族激活后主要的功能是调节基因转录,与抑郁、疼痛等均有密切关系,但在头痛中的研究并不充分,本文旨在初步阐述CREB在头痛与抑郁中的研究现状及其内在联系。方法:本文回顾了近年关于CREB在头痛及抑郁中的研究情况,并阐述其交叉研究领域。结论:CREB在抑郁中的研究较成熟,CREB及其上下游因子很有可能成为抗抑郁药物研究的靶点;其在头痛中的研究较少,主要集中在三叉神经脊束核、三叉神经节、脑干等水平, CREB与中枢敏化可能相关。头痛和抑郁很可能存在共同的神经通路、神经递质,CREB是头痛与抑郁信号通路上共同的调节靶点
偏头痛;抑郁;pCREB;CREB
cAMP (cyclic adenosine monophosphate,环磷腺苷)反应元件结合蛋白(cAMP response element binding protein, CREB)是一种转录因子,定位于细胞核,在脑内所有细胞均有表达,其蛋白家族激活后主要的功能是调节基因转录[1,2,3]。CREB的调节通路包括AC (adenylate cyclase,腺苷酸环化酶)[1]、cAMP、Ca2+[4]、MAPK(mitogen-activated protein kinases, 促分裂素原活化蛋白激酶)[3](见图1)。CREB与即刻早期基因编码的蛋白不同,即早基因受刺激诱导后可以快速合成新蛋白,发挥转录因子或转录调节因子的作用,而CREB只需通过活化自身发挥作用[5]。CREB介导的基因转录包含了三个过程:二聚化、与DNA反应元件相结合、磷酸化。其中,磷酸化是其发挥转录功能的基础,CREB的磷酸化位 点 有 Ser98,Ser129,Ser133,Ser142, 其 中 Ser133是CREB激活的关键位点,而Ser129,Ser142的主要作用为增强或减弱靶基因的转录[5]。pCREB (phosphorylated cAMP response element binding protein, 磷酸化cAMP反应元件结合蛋白)以二聚体的形式结合在CRE的目标基因序列上,从而调节目标基因的转录[1]。目前已知的CREB的靶基因有100多种,其中许多被证实与中枢敏化有关,如c-fos、BDNF(Brain derived neurotrophic factor,脑源性神经营养因子)、CGRP (Calcitonin gene related peptide,降钙素基因相关肽)、NK1受体、COX-2、Synapsin I等[5]。CREB被作为与记忆及学习相关的蛋白而广泛研究[1,6],近年来,研究者发现其与抑郁、疼痛、药物过量均有密切关系[1,5,7,8]。
图 1 CREB的信号转导体系(此图为作者原创,引用请注明出处)
一、CREB在抑郁中的研究情况
CREB是细胞内与抑郁相关的几个信号转导通路的一个交汇点,它能对相关基因的转录进行调节[9]。许多研究均针对长期应用抗抑郁药物后CREB总含量、pCREB或CREB mRNA的含量,实际上,pCREB的含量较另外二者更能体现CREB目标基因的调控作用[10]。
加拿大学者Dar Dowlatshahi和他的团队研究了尸检病人,发现重症抑郁病人之颞叶皮层CREB表达下降,而使用抗抑郁药物可以升高CREB的表达[11]。动物实验发现,抗抑郁药物与电休克治疗均可上调大鼠或小鼠脑内cAMP通路的几个成分,包括CREB与pCREB水平,这些影响或许对于治疗的作用机制至关重要[12]。
动物实验表明,在不同脑区,CREB可以通过升高或降低来产生抑郁样行为表现[1]。在海马中,CREB为抗抑郁效果的重要中间介质,许多标准抗抑郁药物(如去甲肾上腺素再摄取抑制剂、选择性五羟色胺再摄取抑制剂、电击诱发惊厥)均可提升海马中CREB的活性[12]。在啮齿动物中,应用病毒介导的基因转染以直接升高CREB蛋白水平,可以产生抗抑郁作用[13],一些证据表明,CREB表达调节与神经生长因子有关[14]。比方说,许多抗抑郁药物能同样升高海马中的脑源性生长因子(brain derived neurotrophic factor, BDNF),一个CREB调节性靶基因[15]。在抑郁模型中通过调控CREB的上游因子cAMP的药物亦能发挥抗抑郁作用,虽然具体作用脑区还不确定,但海马很可能为一个位点,这些药物也被考虑为可以增强认知的药物[16]。相反的,在啮齿动物的伏隔核(nucleus accumbens, NAc)中,CREB升高则可导致各种抑郁样表现。药物滥用或压力应激均可引起伏隔核中CREB活性升高[17]。伏隔核中CREB的持续升高可以导致快感缺失—一个抑郁的典型症状,同时,也会导致对一系列令人不悦的环境的反应[17]。使处于早期发育的大鼠暴露于哌醋甲酯,可引起CREB的持续升高,进而,这些大鼠就会表现出快感缺失、烦躁和绝望行为[18]。在强迫游泳实验(forced-swim test)中降低伏隔核中CREB的含量可以产生抗抑郁样作用[16]。对杏仁核而言,抑郁模型中CREB含量不同所致的功能改变与情境有关。习得性无助模型中,训练前对对象进行病毒介导CREB表达处理,可引起抑郁样行为,但训练后给予相同处理,却导致了抗抑郁样行为[19]。相关的解释为,训练前诱导CREB表达,加强了习得性无助的学习,而训练后却加强了动物克服无助以及再学习的能力。在大鼠中脑导水管周围灰质(periaqueductal gray, PAG),被捕食压力则可导致CREB表达上升[20]。慢性温和应激可诱导AC信号通路活性在以下区域下降,包括海马、皮层,但在下丘脑处却无统计学差异[21]。这些例子都表明了,CREB的表达具有部位及时间的特异性[1]。CREB具有调整可塑性的功能,这个过程并非生而优劣,而是适应性、适应不良或二者皆有。
二、CREB在头痛中的研究情况
迄今为止,关于CREB在头痛中的研究较少,且主要集中在三叉神经脊束核、三叉神经节及脑干水平。学者Dimos D和同事认为,CREB可能成为偏头痛动物模型中,三叉神经脊束核尾侧部突触后神经元激活的一个新的标志物。他们研究了大鼠三叉神经脊束核尾侧部pCREB在伤害性刺激后的表达情况,发现给予辣椒辣素刺激后,三叉神经脊束核尾侧部CREB与pCREB含量均升高,而预先给予偏头痛的治疗药物舒马曲普坦及那拉曲普坦后,pCREB的升高则被抑制,且其抑制水平在一定范围内与药物剂量相关,作者认为,曲普坦类药物可以减弱CREB在三叉神经系统的激活,从而可能抑制了中枢敏化的形成[7]。
在脑干水平,体外实验显示,大鼠三叉神经节之pCREB受到CGRP的调节,而CGRP又由激活的P2X3或腺苷酸A1受体所诱导[22]。抑制CREB的激活,可以在脑干水平减缓中枢敏化的形成[22]。有实验表明,脊髓背根神经元的中枢敏化是由pCREB介导的翻译水平调节所致[23]。
CREB在头痛中的研究刚刚起步,但在疼痛与中枢致敏中的研究已不鲜见。CREB在疼痛中的研究主要集中在炎性刺激或脊髓损伤所致的痛觉过敏中,其在中枢敏化中的作用已经受到越来越多的关注。研究证实,CREB与神经病理性疼痛以及感染性疼痛密切相关[24,25]。作为ERK活化后激活的下游转录因子,CREB可能参与了慢性疼痛以及中枢神经系统的长时程改变[26]。同时,CREB的激活也可能诱导了CGRP与TRPV1[27]。在慢性中枢性神经病理性疼痛模型中,脊髓损伤后,大鼠的脊髓丘脑束神经元中CREB磷酸化升高[24],而这条纤维束恰恰是上传疼痛的传导束,这一现象显示,损伤所致疼痛与CREB激活相关。目前推断脊髓损伤所致的神经病理性疼痛与ERK 1 /2, p-p38 MAPK, CREB的激活均有关。通过注射辣椒辣素[28]、甲醛[29]、角叉藻聚糖(carrageenan)[30]、酸性盐水[31]而诱发出的中枢敏化中,CREB的激活升高。研究表明ERK与CREB的激活会影响BDNF与neurokinin-1受体的基因表达[32],neurokinin-1受体受到P物质的调节,并且通过G蛋白来参与中枢敏化的形成[33]。在周围性神经病理性疼痛模型中,pCREB的表达同样有所升高[24]。
提到头痛研究中的蛋白组织化学研究,就不得不提到c-fos基因。c-fos为一种即早基因,其转录产物Fos蛋白广泛应用于偏头痛相关的动物模型中[34],与Fos蛋白相比,CREB在头痛研究中有一定优势,如,Fos蛋白的表达需要较强刺激[35],且其在脊髓背根神经节中不表达,同时,在三叉神经脊束核尾侧部较难诱发出Fos蛋白表达[36]。同Fos相比,CREB的表达更加广泛,且其表达在刺激后10分钟即可产生,较Fos蛋白所需的2小时大大缩短[7]。
基础研究表明,偏头痛和抑郁很可能存在共同的神经通路、神经递质(神经肽、激素和单胺类等)、致病基因、环境因素或社会因素等等。目前关于偏头痛和抑郁共病的可能机制,主要有中枢敏化、五羟色胺和多巴胺的功能障碍、药物过量使用和卵巢激素波动等学说,对于这些假说的研究并不完全,偏头痛与抑郁之间的关系还需要更多的基础研究,特别是通过有效的抑郁与偏头痛动物模型进一步明确。CREB作为头痛与抑郁信号通路上共同的调节靶点,其重要性不容小觑,下一步我们将通过更多研究探讨CREB在头痛与抑郁共病中的联系。
三、总结
CREB在抑郁中的研究已经日益成熟,已经被用于各种抑郁动物模型的研究,且CREB及其上下游因子很有可能成为抗抑郁药物研究的核心与靶点。然而,CREB在头痛中的研究较少,主要集中在三叉神经脊束核、三叉神经节、脑干等水平,由于CREB与中枢敏化可能相关,相信在日后针对CREB与头痛的研究会更为深入。头痛和抑郁很可能存在共同的神经通路、神经递质,CREB是头痛与抑郁信号通路上共同的调节靶点,下一步我们将通过更多研究探讨其在头痛与抑郁中的关系。
[1] Carlezon WA, Duman RS, Nestler EJ. The many faces of creb. Trends in neurosciences, 2005, 28:436 ~ 445.
[2] Imbe H, Kimura A. Repeated forced swim stress affects the expression of pcreb and deltafosb and the acetylation of histone h3 in the rostral ventromedial medulla and locus coeruleus. Brain research bulletin, 2016, 127:11 ~ 22.
[3] Kudo T, Uda S, Tsuchiya T,et al. Laguerre filter analysis with partial least square regression reveals a priming effect of erk and creb on c-fos induction. PLoS One, 2016, 11:e0160548.
[4] Dash PK, Karl KA, Colicos MA,et al.Camp response element-binding protein is activated by Ca2+/calmodulin- as well as camp-dependent protein kinase.Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 5061 ~ 5065.
[5] 姚永兴,姜桢,曾因明. Camp反应元件结合蛋白与神经病理性疼痛. 国际麻醉学与复苏杂志, 2006, 27:106 ~ 107.
[6] Miyashita T, Oda Y, Horiuchi J,et al. Mg(2+) block of drosophila nmda receptors is required for longterm memory formation and creb-dependent gene expression. Neuron, 2012, 74: 887 ~ 898.
[7] Mitsikostas DD, Knight YE, Lasalandra M,et al.Triptans attenuate capsaicin-induced creb phosphorylation within the trigeminal nucleus caudalis: A mechanism to prevent central sensitization? J Headache Pain, 2011, 12: 411 ~ 417.
[8] 高毅, 冷玉芳, 葛亮,等. 腹腔注射右美托咪啶对神经病理性疼痛大鼠镇痛的实验研究. 中国疼痛医学杂志 , 2015, 21(8): 575 ~ 580.
[9] Blendy JA. The role of creb in depression and antidepressant treatment. Biological psychiatry, 2006,59: 1144 ~ 1150.
[10] Meyer TE, Waeber G, Lin J,et al. The promoter of the gene encoding 3’, 5’-cyclic adenosine monophosphate(camp) response element binding protein contains camp response elements: Evidence for positive autoregulation of gene transcription. Endocrinology, 1993, 132: 770 ~ 780.
[11] Dowlatshahi D, MacQueen GM, Wang JF,et al.Increased temporal cortex creb concentrations and antidepressant treatment in major depression. Lancet,1998, 352: 1754 ~ 1755.
[12] Thome J, Sakai N, Shin K,et al. Camp response element-mediated gene transcription is upregulated by chronic antidepressant treatment. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000, 20: 4030 ~ 4036.
[13] Chen AC, Shirayama Y, Shin KH,et al. Expression of the camp response element binding protein (creb)in hippocampus produces an antidepressant effect.Biological psychiatry, 2001, 49: 753 ~ 762.
[14] Newton SS, Collier EF, Hunsberger J,et al. Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. The Journal of neuroscience:the official journal of the Society for Neuroscience, 2003, 23:10841 ~ 10851.
[15] Nibuya M, Morinobu S, Duman RS. Regulation of bdnf and trkb mrna in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. The Journal of neuroscience:the official journal of the Society for Neuroscience, 1995, 15: 7539 ~ 7547.
[16] Barad M, Bourtchouladze R, Winder DG,et al.Rolipram, a type iv-speci fi c phosphodiesterase inhibitor,facilitates the establishment of long-lasting long-term potentiation and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 15020 ~ 15025.
[17] Barrot M, Olivier JD, Perrotti LI,et al. Creb activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 11435 ~ 11440.
[18] Andersen SL, Arvanitogiannis A, Pliakas AM,et al.Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nature neuroscience, 2002, 5: 13 ~ 14.
[19] Wallace TL, Stellitano KE, Neve RL,et al. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biological psychiatry, 2004, 56: 151 ~ 160.
[20] Adamec R, Berton O, Abdul Razek W. Viral vector induction of creb expression in the periaqueductal gray induces a predator stress-like pattern of changes in pcreb expression, neuroplasticity, and anxiety in rodents. Neural plasticity, 2009, 2009: 904568.
[21] Li YC, Wang FM, Pan Y,et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled ac-camp pathway in chronic unpredictable mild stress of rats. Progress in neuro-psychopharmacology &biological psychiatry, 2009, 33: 435 ~ 449.
[22] Simonetti M, Giniatullin R, Fabbretti E. Mechanisms mediating the enhanced gene transcription of p2x3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. The Journal of biological chemistry,2008, 283: 18743 ~ 18752.
[23] Kawasaki Y, Kohno T, Zhuang ZY,et al. Ionotropic and metabotropic receptors, protein kinase a, protein kinase c, and src contribute to c-fiber-induced erk activation and camp response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2004,24: 8310 ~ 8321.
[24] Crown ED, Ye Z, Johnson KM,et al. Increases in the activated forms of erk 1/2, p38 mapk, and creb are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Experimental neurology, 2006, 199: 397 ~ 407.
[25] 谢建琴, 马永丰, 石翊飒.等豆腐果苷对慢性神经病理性疼痛大鼠热痛觉过敏及脊髓背角p-creb表达的影响. 中国疼痛医学杂志 2009, 2: 6.
[26] Davis S, Vanhoutte P, Pages C,et al. The mapk/erk cascade targets both elk-1 and camp response elementbinding protein to control long-term potentiationdependent gene expression in the dentate gyrus in vivo.The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2000, 20: 4563 ~ 4572.
[27] Impey S, McCorkle SR, Cha-Molstad H,et al.De fi ning the creb regulon: A genome-wide analysis of transcription factor regulatory regions. Cell, 2004, 119:1041 ~ 1054.
[28] Wu J, Fang L, Lin Q,et al. The role of nitric oxide in the phosphorylation of cyclic adenosine monophosphate-responsive element-binding protein in the spinal cord after intradermal injection of capsaicin.The journal of pain : official journal of the American Pain Society, 2002, 3: 190 ~ 198.
[29] Ji RR, Rupp F. Phosphorylation of transcription factor creb in rat spinal cord after formalin-induced hyperalgesia: Relationship to c-fos induction. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, 17: 1776 ~ 1785.
[30] Messersmith DJ, Kim DJ, Iadarola MJ. Transcription factor regulation of prodynorphin gene expression following rat hindpaw inflammation. Brain research Molecular brain research, 1998, 53: 260 ~ 269.
[31] Hoeger-Bement MK, Sluka KA. Phosphorylation of creb and mechanical hyperalgesia is reversed by blockade of the camp pathway in a time-dependent manner after repeated intramuscular acid injections.The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2003, 23: 5437 ~ 5445.
[32] Duric V, McCarson KE. Neurokinin-1 (nk-1) receptor and brain-derived neurotrophic factor (bdnf) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Molecular pain, 2007, 3: 32.
[33] Winter MK, McCarson KE. G-protein activation by neurokinin-1 receptors is dynamically regulated during persistent nociception. The Journal of pharmacology and experimental therapeutics, 2005,315: 214 ~ 221.
[34] 刘若卓,于生元,王贺波,等. 刺激大鼠上矢状窦区硬脑膜对中脑导水管周围灰质c-fos蛋白表达的影响. 中国康复医学杂志, 2003, 18: 10 ~ 3.
[35] Bullitt E, Lee CL, Light AR,et al. The effect of stimulus duration on noxious-stimulus induced c-fos expression in the rodent spinal cord. Brain research,1992, 580: 172 ~ 179.
[36] Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by l-name. Neuroscience letters, 1999, 266: 173 ~ 176.
10.3969/j.issn.1006-9852.2017.12.008
国家自然科学基金[National Natural Science Foundation of China (grants 81471147, 81600952, 81500943)];解放军总医院扶持基金[Clinical Support Fund of Chinese PLA General Hospital (grants 2014FC-CXYY-1006)]
△通讯作者 yusy1963@126.com