APP下载

microRNA在股骨头坏死防治中的研究进展

2017-10-23于长岁张晓峰徐西林

中国医药导报 2017年27期
关键词:微小RNA股骨头坏死综述

于长岁 张晓峰 徐西林

[摘要] microRNAs(miRNAs)属于一个非蛋白编码家族的小RNA,参与多种疾病的生理和病理过程,长度约为22个核苷酸,在人的组织或细胞中有特定表达,其中一组miRNAs已被证实在各种骨科疾病的基因调控中发挥着基础性作用,如骨肿瘤、骨关节炎、风湿性关节炎等。对miRNA在股骨头坏死中的研究,有助于更加清楚认识该病的发病机制。股骨头坏死是一种以股骨头血液供应破坏为主要病因,以骨骼和肌肉功能障碍为主要症状的骨科疾病。近年来研究显示,microRNA对股骨头坏死的微循环、血管的损伤与修复、其他疾病导致的局部微循环功能障碍以及骨细胞的调亡都有着重要的调控作用。本文对近年来microRNA与股骨头坏死的相关研究成果进行分析和总结,并展望microRNA防治股骨头坏死的研究前景。

[关键词] 微小RNA;股骨头坏死;综述;研究进展

[中图分类号] R274 [文献标识码] A [文章编号] 1673-7210(2017)09(c)-0048-04

[Abstract] microRNAs (miRNAs) belongs to a small RNA of non-protein coding families, and is involved in many physiological and pathological processes. They are about 22 nucleotides long and have specific expression in human tissues or cells. One group of miRNAs has been shown to play a fundamental role in gene regulation in various kinds of orthopedics diseases, such as bone tumors, osteoarthritis, and rheumatoid arthritis. The study of miRNA in osteonecrosis of the femoral head can help to understand the pathogenesis of the disease more clearly. The main cause of osteonecrosis of the femoral head is the destruction of femoral head blood supply, and the main symptoms are bone and muscle dysfunction. The recent studies show that microRNA plays an important role in the regulation of microcirculation of osteonecrosis of the femeral head, local microcirculation dysfunction caused by other diseases and bone cells apoptosis. In this paper, the related research results of microRNA and osteonecrosis of the femoral head in recent years are analyzed and summarized, and the prospect of microRNA in the prevention and treatment of osteonecrosis of the femoral head is also looked forward.

[Key words] microRNA; Femoral head necrosis; Review; Research progress

細胞中含有多种非编码RNAs,其中microRNA(miRNA)被认为最广泛存在于人类的组织或细胞中,是多种细胞生物体基因调控分子中较为丰富的一类,并且能影响许多蛋白编码基因的输出。miRNA基因产生约22个核苷酸的微小转录本,并作为其他RNA的反义调节因子[1-2]。

股骨头坏死是一种常见的骨科疾病,如果不及时治疗近80%的患者股骨头会完全塌陷,是骨科医生所面临的巨大挑战[3]。股骨头坏死的发病机制包括骨内压增高、脂肪代谢紊乱、微血管内皮细胞的损害、成骨细胞和骨细胞的凋亡等[4]。研究表明,miRNAs通过靶基因可以调节机体的生物学及病理学变化,包括细胞增殖、分化与凋亡以及组织的发育等[5-6]。

1 miRNA在股骨头的表达及功能

20世纪80年代Lee等[7]在线虫的发育过程中第一次发现miRNA并命名为lin-4,随着微生物科学的发展和基因测序技术的不断提高,miRNA逐渐成为临床医学各学科基础研究领域的重点。Lawrie等[8]首次发现miRNA是诊断股骨头坏死的潜在非侵入性标志物,奠定了miRNA在骨科疾病诊断中的临床应用。Wang等[9]测定激素性股骨头坏死患者血清中miRNA,发现有27种miRNAs存在,并且这些miRNA直接参与细胞的分化、凋亡及增殖。miRNA的不同表达不仅可以作为其功能的基础,也可作为诊断各种疾病的标志物[10]。

1.1 miRNA在股骨头血清中的表达及功能

Wang等[9]将miRNA纯化后进行高通量测序,并与股骨头坏死患者血清中miRNA差异表达对照发现,股骨头坏死患者血清中miR-3960明显增加。从股骨头坏死血清中筛选出207个miRNA,15个miRNA包括miR-423-5p、miR-3960、miR-195-5p、miR-15b-3p和miR-1304-3p表达明显,12个miRNA包括miR-99a-5p、miR-532-5p、miR-140-5P、miR-10a-5p、miR-10b-5p、miR-181c-5p和miR-433表达也明显,提示这些miRNA直接参与细胞凋亡、增殖与分化。而miR-195-5p和miR-15b-3p是miR-15/16家族,miR-15/16在细胞凋亡中具有重要的调节作用。Xia等[11]研究发现,miR-15b和miR-16参与了Bcl-2靶向调控和细胞凋亡的过程。另有研究表明,miR-15b-3P和miR-195-3p在激素性股骨头坏死患者血清中有上调趋势,证明了miR-15和miR-195也可以促进细胞凋亡[12]。endprint

1.2 miRNA在股骨头软骨的表达及功能

成熟的miRNA在股骨头软骨发育中起着重要作用。Zhou等[12]利用原位杂交法分析显示miRNAs在软骨组织中存在着特异性表达模式。为了识别miRNA在软骨细胞中的特异性表达,Ha等[13]利用miRNA芯片比较原代软骨细胞与人类股骨头软骨的骨髓间充质干细胞基因谱,发现在人类股骨头软骨细胞中miR-140具有促进软骨细胞分化作用,而miR-675是软骨细胞的特异表达模式,miR-675表达多少取决于miR-140分化程度。由于股骨头关节软骨中的miR-140被白细胞介素-1和细胞因子所抑制,因此股骨头软骨中miR-140表达较少。研究表明,miR-140的减少与股骨头坏死的发病机制有关[11]。miR-140的关键作用在股骨头软骨,而mRNAs可以调控Adamts-5和miRNAs等多个靶基因。最新研究表明,HDAC4和IGFBP5可以下调miR-140,而miR-140可以抑制Adamts-5表达通路,从而调节软骨基质合成与降解的整体平衡[12]。实际上从基因表达分析中可以发现,miR-140通过调节Adamts-5表达,在维持股骨头软骨的稳定性和完整性方面起着关键作用。

2 miRNA与股骨头坏死的防治

股骨头无菌性坏死的病理过程是指股骨头细胞成分包括骨、脂肪和造血细胞的缺血性变化,而致细胞坏死和凋亡[14],该病具有渐进性和破坏性等特点,如果得不到及时的治疗,最终引起股骨头塌陷,大约70%的患者需要髋关节置换术[15]。研究证实,有一组miRNAs在股骨头坏死各种基因调控中发挥基础性作用。据估计,miRNAs能调节5300多个人类基因,约占人类基因集的30%[16]。

2.1 miRNA与成骨细胞

Cx43是骨细胞的主要连接蛋白,也是miR-206一个分子靶点,miR-206和Cx43被证实是成骨细胞分化、成熟以及骨细胞代谢的关键因素。Hudson等[17]认为,miR-206是一个特定的肌肉miRNA,在C2C12细胞成骨分化过程中有降低趋势,而Cx43在成骨细胞培养中,可以修复成骨细胞功能和基因表达。Liu等[18]在股骨头坏死的动物模型中发现,当miR-206表达增加时,Cx4的蛋白表达在动物模型中减少。这些结果表明,Cx43/miR-206与激素性股骨头坏死的发病机制有关。在成骨细胞培养物中,一定浓度的碱性磷酸酶、骨桥蛋白和骨钙素可抑制成骨细胞的分化和标记。Runx2在成骨细胞形成和分化的早期起着重要作用,当上调Runx2表达时,ALP的活性也随之增强,并促进mRNA对BSP和OC的表达。成骨细胞分化的结果是形成骨骼并获得骨量的关键因素,对成骨细胞分化标志物的表达检测可以发现,Runx2的增多可以有效激活成骨细胞的数量。早期研究表明,Wnt/β-catenin信号通路参与调控成骨细胞的增殖、存活、分化与凋亡,该信号通路的激活可促进成骨细胞生成并抑制破骨细胞的分化。此外,Cx43是Wnt信号通路的功能靶点,而Wnt信号通路的激活可以增强Cx43蛋白的表达[19]。

2.2 miRNA与骨髓间充质干细胞

骨髓间充质干细胞在局部微环境下可定向分化为成骨细胞、脂肪细胞、软骨细胞和肌细胞等,并分泌多种成骨活性因子,进而促进坏死区新生血管生成和新骨形成,促进坏死股骨头的修复过程[20]。一项研究显示,pre-miR-2861突变可导致原发性股骨头坏死,由于miR-2861通过抑制HDAC5,增强成骨转录因子的降解,从而促进Runx2对成骨细胞的分化[21]。最近研究发现,miR-21、miR-23a、miR-24和miR-25在股骨头坏死患者的血清和骨组织中表达呈上升趋势,提示其可以促进坏死区新生骨的形成[22]。miR-140存在于骨髓间充质干细胞的关节软骨组织中,一直被认为是一个软骨特异性miRNA,并参与早期骨骼的发育,其作用靶点是JAG1和Tmem119[23-24]。JAG1是Notch受体中的一个配体,该配体可以通过激活Runx2和ALP从而诱导骨髓间充质干细胞分化为成骨细胞;Tmem119能诱导SMAD1/5和Runx2的转录活性,进一步促进成骨分化[25-26]。

2.3 miRNA与内皮祖细胞

内皮祖细胞是一类可分化为成熟血管内皮细胞的梭形干细胞。内皮祖细胞可在局部定向分化为血管内皮细胞,并促进新生血管的形成;另外,该细胞可通过血管生成1-Tie2信号通路促进骨髓间充质干细胞的生长,进一步促进股骨头的修复[27]。Huber等[28]发现内皮祖细胞亚型具有明显的增殖潜能和自我更新能力,并能在体内形成新的血管。miRNAs被认为是新生血管形成的关键调节因子,可以对内皮细胞的分化功能有正向或负向调节作用。Morrison等[29]发现miR-150在股骨头坏死患者中上调内皮祖细胞,其作用靶点为Spred-1。miR-150是一种单核细胞富集miRNA,在细胞增殖、迁移、分化和胚胎发育中的起着重要作用。研究发现,miR-150适用于表达内皮祖细胞、人类脐静脉内皮细胞和冠状动脉内皮细胞的miRNA表达分析谱[30]。

3 前景展望

近年来,miRNA逐渐成为骨科学的研究重点。随着对miRNA研究的深入,学者们认为,由于股骨头组织结构的特殊性,miRNA在骨科的研究有着光明的前景。由于不同病理因素能够导致不同miRNA的差异性表達,miRNA检测有助于确定不同股骨头坏死的发病原因,使治疗更具有针对性,提高股骨头坏死患者的治愈率。笔者认为未来基于的防治股骨头坏死策略主要可分为两个方向:①通过miRNA或其类似药物沉默高表达的疾病相关基因;②利用抗miRNA分子沉默引起疾病的高表达miRNA。总之,miRNA不但能够指导医生的临床治疗,也能够帮助设计高效的miRNA靶向药物[31]。endprint

[參考文献]

[1] Boucherat O,Potus F,Bonnet S. microRNA and pulmonary hypertension [J]. Adv Exp Med Biol,2015,888:237-252.

[2] Drusco A,Nuovo GJ ,Zanesi N,et al. MicroRNA profiles discriminate among colon cancer metastasis [J]. PLoS One,2014,9(6):e96670.

[3] Mont MA,Jones LC,Hungerford DS. Nontraumatic osteon?鄄ecrosis of the femoral head:ten years later [J]. Bone Joint Surg,2006,88(5):1117-1132.

[4] Kerachian MA,Séguin C,Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head:a new understanding of the mechanisms of action [J]. Steroid Biochem Mol Biol,2009,114(4):121-128.

[5] Roy S,Benz F,Luedde T,et al. The role of miRNAs in the regulation of infammatory processes during hepatofbrogenesis [J]. Hepatobiliary Surg Nutr,2015,4(1):24-33.

[6] Chung AC,Lan HY. microRNAs in renal fbrosis [J]. Front Physiol,2015,6(2):50.

[7] Lee RC,Feinbaum RL,Ambros V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to & II-14 [J].Cell,1993,75(5):843-854.

[8] Lawrie CH,Gal S,Dunlop HM,et al. Pushkaran B. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B cell lymphoma [J]. Br J Haematol,2008,141(5):672-675.

[9] Wang X,Qian W,Wu Z,et al. Preliminary screening of differentially expressed circulating microRNAs in patients with steroid-induced osteonecrosis of the femoral head [J]. Mol Med Rep,2014,10(6):3118-3124.

[10] Sethi S,Ali S,Sethi S,et al. MicroRNAs in personalized cancer therapy [J]. Clin Genet,2014,86(1):68-73.

[11] Xia L,Zhang D,Du R,et al. miR-15b and miR?16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells [J]. Int J Cancer,2008,123(2):372-379.

[12] Zhou Q,Chen F,Fei Z,et al. Genetic variants of lncRNA HOTAIR contribute to the risk of osteosarcoma [J]. Oncotarget,2016,7(15):19928-19934.

[13] Ha M,Kim VN. Regulation of microRNA biogenesis [J]. Nat Rev Mol Cell Biol,2014,15(8):509-524.

[14] Van der Jagt D,Mokete L,Pietrzak J,et al. Osteonecrosis of the femoral head:evaluation and treatment [J]. J Am Acad Orthop Surg,2015,23(2):69-70.

[15] Johnson AJ,Mont MA,Tsao AK,et al. Treatment of femoral head osteonecrosis in the United States:16-year analysis of the Nationwide Inpatient Sample [J]. Clin Orthop Relat Res,2014,472(2):617-623.

[16] Kafchinski LA,Jones KB. MicroRNAs in osteosarcomagenesis [J]. Adv Exp Med Biol,2014,804:119-127.endprint

[17] Hudson MB,Woodworth-Hobbs ME,Zheng B,et al. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export [J]. Am J Physiol Cell Physiol,2014,306(6):C551-558.

[18] Liu G,Luo G,Bo Z,et al. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head [J]. Exp Mol Pathol,2016,101(1):89-99.

[19] Arioka M,Takahashi-Yanaga F,Sasaki M,et al. Acceleration of bone regeneration by local application of lithium:Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis [J]. Biochem Pharmacol,2014,90(4):397–405.

[20] Gulyaeva LF,Kushlinskiy NE. Regulatory mechanisms of microRNA expression [J]. J Translat Med,2016,14(1):143.

[21] Papadimitriou N,Thorfve A,Brantsing C,et al. Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose [J]. Stem Cells Dev,2014,23(21):2568-2580.

[22] Seeliger C,Karpinski K,Haug AT,et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures [J]. J Bone Miner Res,2014, 29(8):1718-1728.

[23] Hwang S,Park SK,Lee HY,et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells [J]. FEBS Lett,2014,588(17):2957-2963.

[24] Karlsen TA,Jakobsen RB,Mikkelsen TS,et al. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN [J]. Stem Cells Dev,2014,23(3):290-304.

[25] Hill CR,Yuasa M,Schoenecker J,et al. Jagged1 is essential for osteoblast development during maxillary ossification [J]. Bone,2014,62(5):10-21.

[26] Siculella L,Tocci R,Rochira A,et al. Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5-UTR in a cellular model of hepatic steatosis [J]. Biochim Biophys Acta,2016,1861(5):471-481.

[27] Lin Y,Weisdorf DJ,Solovey A,et al. Origins of circulating endothelial cells and endothelial outgrowth from blood [J]. J Clin Invest,2000,105(1):71-77.

[28] Huber BC,Grabmaier U,Brunner S. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration [J]. World J Stem Cells,2014,6(5):637-643.

[29] Morrison SJ,Scadden DT. The bone marrow niche for haematopoietic stem cells [J]. Nature,2014,505(7483):327-334.

[30] Rose JA,Erzurum S,Asosingh K. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells [J]. Cytometry A,2015,87(1):5-19.

[31] Martin EC,Qureshi AT,Dasa V,et al. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue:Perspectives on miRNA biogenesis and cellular transcriptome [J]. Biochimie,2016,124:98-111.

(收稿日期:2017-06-20 本文編辑:程 铭)endprint

猜你喜欢

微小RNA股骨头坏死综述
SEBS改性沥青综述
NBA新赛季综述
MiRNA在肺癌诊断与治疗中的应用进展
超导磁共振与多层螺旋CT对诊断股骨头坏死效果比较分析
细针钻孔减压术联合活血养骨汤治疗早期股骨头坏死疗效观察
鼻咽癌肿瘤干细胞miRNAs和 lncRNAs及mRNAs表达谱分析
骨髓干细胞移植治疗股骨头坏死疗效分析
JOURNAL OF FUNCTIONAL POLYMERS
成人早期股骨头坏死应用CT和MRI检查诊断临床价值分析
乳腺癌与糖尿病关联研究的新进展