乳腺癌与糖尿病关联研究的新进展
2014-03-28沈丽段卫明陶敏
沈丽+段卫明+陶敏
[摘 要] 乳腺癌是女性最常见的恶性肿瘤,也是导致女性死亡的主要原因之一。基因、激素、年龄和环境都是乳腺癌发病的相关风险因素。近年来国内外流行病学和临床研究提出糖尿病,尤其是2型糖尿病(T2DM,type-2 diabetes mellitus)也是导致乳腺癌发病的高危因素。常规地给予抗糖尿病药物二甲双胍不但可以有效控制血糖水平,还能在一定程度上降低乳腺癌的风险,但其具体机制尚未被证实。此外,近年来关于miRNA在乳腺癌与糖尿病之间的作用也越来越被关注。本文就乳腺癌与糖尿病关系的最新研究进展作一综述。
[关键词] 乳腺癌;糖尿病;二甲双胍;微小RNA
中图分类号:R737.9 文献标识码:A 文章编号:2055-5200(2014)01-017-05
Doi: 10.11876/mimt201401005
Recent research progress on the relationship between breast cancer and diabetes SHEN Li,DUAN Wei-ming,TAO Min . (Department of Oncology,the first Affiliated Hospital of Soochow University ,Suzhou,215006)
[Abstract] Breast cancer is the most common malignant tumors of women and is one of the leading causes of womens death.Studies confirmed that genetics,hormones,aging and environment are risk factors for breast cancer.Furthermore,many epidemiological and clinical studies have suggested that diabetes mellitus,especially type-2 diabetes mellitus(T2DM) are associated with higher risk of breast cancer.Accumulating clinical data have shown that administration of anti-diabete drugs metformin not only can effectively control blood glucose levels,also can reduce the risk of breast cancer in a certain extent,although its detailed mechanism remains largely unknown.Recently,more and more attention has been focused on the potenital roles of miRNA in the pathogenesis of breast cancer and diabetes.This review aims to summarize the research progress of the complicated relationship between breast cancer and diabetes.
[Keywords] breast cancer;diabetes mellitus;metformin;miRNA
近年来,随着经济的发展和人口老龄化进程的加快,糖尿病和乳腺癌的发病率呈上升趋势。流行病学资料显示,目前全球糖尿病患者约2.46亿,而我国糖尿病患者近1亿。在许多国家,乳腺癌是女性高发的恶性肿瘤,发病率仅次于肺癌,我国的乳腺癌发病率在20~50人/10万人,居女性癌症死亡率的第二位。这两种疾病严重威胁着人类的健康和生命,正逐渐成为全球关注的公共卫生问题。近来流行病学和临床研究显示:糖尿病尤其是2型糖尿病是乳腺癌发病的高危因素之一。
1 乳腺癌与糖尿病的相关性
据报道,18%的乳腺癌患者合并糖尿病[1],且伴有糖尿病的乳腺癌患者肿块更大,更易出现淋巴结浸润和远处转移[2]。糖尿病能缩短乳腺癌患者的无病生存期和/或增加患者死亡率[2-3]。研究发现糖化血红蛋白>7%的女性乳腺癌患者的死亡率是糖化血红蛋白<6.5%的患者的2倍以上,同时糖化血红蛋白>7%的患者无病生存期缩短[4]。此外,同时患有乳腺癌和糖尿病的患者其化疗后毒副作用较高[5]。因此,是否合并糖尿病应成为乳腺癌患者个体化治疗和预后判断时需考虑的因素之一。
2 乳腺癌与糖尿病的可能生物学机制
2.1 糖尿病与乳腺癌的共同机制
糖尿病患者通常伴有高胰岛素血症,而胰岛素水平的升高可以促进胰岛素抵抗的形成及胰岛素样生长因子(insulin-like growth factor,IGF)生物学活性的提高[6-7]。研究发现乳腺癌细胞中的胰岛素、IGF-ⅠR(IGF-Ⅰreceptor)和IRS-Ⅰ/Ⅱ(insulin receptor substrates-Ⅰ/Ⅱ)表达水平较高。Key等[8]发现血液中高浓度的IGF-Ⅰ使乳腺癌的发病风险升高28%。Henkens等[9]发现用胰岛素控制糖尿病患者的血糖水平能增加包括乳腺癌在内许多肿瘤的发生和发展风险。
糖尿病促进乳腺癌发生和发展的可能机制包括:
1、胰岛素的直接作用:胰岛素作为一种生长因子,能活化促有丝分裂原激活MAPK,加快细胞有丝分裂,促进肿瘤的发生[10]。
2、IGF途径:糖尿病患者高胰岛素血症能通过促进IGF-Ⅰ的合成和抑制胰岛素样生长因子结合蛋白(insulin-like growth factor binding protein,IGFBP)的合成,使游离的IGF-Ⅰ浓度增加,生物学活性增强。与胰岛素相比,IGF-Ⅰ的促细胞有丝分裂及抗细胞凋亡作用更强。
3、相关信号通路:高胰岛素血症通过IRS介导胰岛素/IGF相关信号通路,如PI3K、AKT、mTOR等信号通路,促进肿瘤细胞增殖、抑制细胞凋亡并且促进血管新生,加速乳腺癌的进展[11-12]。这些提示,糖尿病可能通过胰岛素/IGF、高胰岛素血症及胰岛素抵抗等在一定程度上促进乳腺癌的发生和发展并造成其不良预后。
2.2 多肽类激素在糖尿病和乳腺癌中的作用
现在普遍认为肥胖能通过促进胰岛素抵抗的形成和活化胰岛素/IGF相关信号通路,增加糖尿病与乳腺癌的发病风险,并且是不良预后的危险因素[13]。但近来研究发现,一种由脂肪细胞所产生的多肽类激素(脂联素)能在一定程度上降低糖尿病和乳腺癌的发病风险。Gokulakrishnan等发现2型糖尿病及乳腺癌患者的脂联素水平较低[14-15];但另一种多肽类激素(瘦素)则对糖尿病和乳腺癌的发生起促进作用,临床研究发现瘦素能在一定程度上增加糖尿病与乳腺癌的发病风险[16-17]
2.2.1 脂联素 首先,脂联素被认为是一种胰岛素增敏激素,能在肌肉组织中通过胰岛素受体的酪氨酸磷酸化作用增加胰岛素的敏感性,降低胰岛素抵抗,从而下调胰岛素/IGF-Ⅰ相关信号通路,抑制细胞的增殖、促进细胞凋亡。其次,脂联素类似一种抗炎因子,不但可以抑制炎症因子的表达,如NF-KB,IL-6等,而且可以限制炎症因子的活性,起到抑制细胞增殖、促进细胞凋亡及抑制血管新生的作用;另外,脂联素通过激活PPAR-γ(peroxisome proliferator-activated receptor-γ)抑制血管新生,并且通过激活细胞内的半胱氨酸级联反应诱导自噬,抑制细胞分化[18]。总之,脂联素通过不同的作用机制对糖尿病和乳腺癌患者起保护作用。
2.2.2 瘦素 首先,瘦素通过与其受体结合,活化有关信号通路,如JAK/STAT通路、JNK通路及其下游与细胞分裂增殖有关的PI3K、ERK1/2、AKT/ GSK3、PKC-a、AP-1及NF-KB等通路,促进细胞增殖、抑制细胞凋亡。其次,瘦素通过增强蛋白水解酶的活性,降解细胞外基质,促进肿瘤血管新生和肿瘤转移。此外,瘦素能通过活化芳香化酶而增强雌激素的合成,加快乳腺癌的发生和发展[19]。综上,瘦素通过这些作用机制增加了乳腺癌与糖尿病的发病风险。
2.3 微小RNA在糖尿病和乳腺癌中的作用
微小RNA(microRNA,miRNA)是一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA分子。通常在转录后水平调控基因表达,广泛参与细胞增殖、分化和凋亡等生命过程。近年来研究者发现,miRNA在糖尿病与乳腺癌患者中的表达谱发生了不同程度的失调,其可能会成为糖尿病和乳腺癌发展进程中的潜在分子标志物与治疗靶点[20]。
2.3.1 miR-21 miR-21被认为是一类促癌miRNA,通过直接或间接调控一些抑癌基因如:PTEN、PDCD4等,促进肿瘤的发生和发展[21-22]。有报道,敲除MDA-MB-231细胞株的miR-21可显著降低乳腺癌细胞的侵袭性和转移能力。临床上,miR-21在人类乳腺癌中过表达与肿瘤的分期和淋巴结转移有关,提示其可作为乳腺癌侵袭性预后的分子标志物。此外,miR-21在乳腺癌中过表达可引起细胞凋亡蛋白抑制因子(inhibitor of apoptosis,IAPs)及多药耐药蛋白1(multidrug resistance 1,MDR1)表达上调,导致肿瘤细胞凋亡受阻和化疗耐药[23]。已有研究发现糖尿病患者的miR-21表达上调,miR-21可能通过抑制胰岛素刺激的葡萄糖吸收,导致胰岛素抵抗的形成,最终促使糖尿病发生[24],而这又可以促进乳腺癌的发生和发展。
2.3.2 miR-34a miR-34a是P53基因的重要下游效应子,在P53信号通路中起抑癌基因的作用,通过靶向作用于Notch-1和CD44而显示出有效的抗细胞增殖和促细胞凋亡活性 [25]。研究证实,肿瘤细胞的能量代谢主要来源于糖酵解,这种不同于正常细胞需求的变化称为瓦氏效应(Warbrug effect)。miR-34a则可以通过靶向作用于多种糖代谢相关酶基因mRNA的3-UTR,如HK1、HK2、GP1和PDK1等降低糖酵解率,进而起到抗细胞增殖和促细胞凋亡的作用[26]。Peural等[27]研究发现miR-34a的高表达与乳腺癌患者的复发及死亡的低风险相一致。另外,Kong等[28]发现糖尿病患者的miR-34a高表达能导致葡萄糖刺激的胰岛素分泌改变并诱导凋亡。因此,miR-34a有望成为乳腺癌和糖尿病的潜在治疗靶点。
2.3.3 Let-7 Let-7被认为是一种抑癌miRNA,通过与cyclin D2、CDK6、CDC25、H-RAS及高迁移率族蛋白A2(high mobility group AT-hook 2,HMGA2)基因等的3-UTR结合,抑制其表达,调节细胞的分裂和细胞周期的进程,抑制细胞增殖,达到抑制肿瘤发生和发展的作用[29]。临床研究显示,某些Let-7家族成员(如Let-7c、Let-7f-1、Let-7a-2和Let-7a-3)的低表达与乳腺癌预后不良相关[30]。另外,Let-7在胰岛细胞中的高表达不仅会导致葡萄糖耐量降低及葡萄糖诱导的胰岛素分泌减少[31],而且还能起到调节PPAR-γ表达的作用[32],最终起到抗糖尿病和抗乳腺癌的作用。因此,Let-7对糖尿病和乳腺癌的发病可能起抑制作用。
3 抗糖尿病药物二甲双胍在乳腺癌中的作用
二甲双胍是双胍类的口服降糖药,通过抑制肝糖原再生相关基因的转录及促进骨骼肌糖原摄取,降低血糖、增加胰岛素活性并降低胰岛素抵抗相关基因的高胰岛素血症,是2型糖尿病治疗的基石。近年来,有关二甲双胍的抗肿瘤作用研究日益增多。2010年瑞士学者BodmetM发现,长期使用二甲双胍可以降低女性糖尿病患者乳腺癌的发生风险[33]。一项回顾性研究显示,早期乳腺癌合并糖尿病患者术后辅助化疗联合二甲双胍的病理完全反应率为24%,而未服用二甲双胍者的病理完全反应率仅为8%[34]。
二甲双胍的抗乳腺癌可能作用机制:1.大部分乳腺癌细胞表面的胰岛素受体高表达,二甲双胍通过激活AMPK增加胰岛素敏感性及降低胰岛素水平来发挥抗肿瘤作用[35]。2.二甲双胍通过肝激酶B1介导AMPK活化,使TSC的不同部位磷酸化抑制mTOR复合物1信号通路,抑制细胞生长,甚至诱导细胞凋亡[36]。3.二甲双胍刺激乳腺癌患者的长期记忆细胞(Tm淋巴细胞)增生,提高抗肿瘤免疫,AMPK可能参与该过程,但具体机制有待进一步阐明[37]。4.二甲双胍通过调节乳腺癌细胞与乳腺正常细胞之间的动态转换,选择性抑制乳腺癌干细胞[38]。并且能在转录水平上抑制上皮间质转化(epithelial-mesenchymal transition,EMT),影响肿瘤的浸润、转移等过程。另外,二甲双胍还可以抑制黏附分子CD24的表达,CD24不仅是乳腺癌干细胞的标志物,也是三阴性乳腺癌不良预后的指标之一[39]。综上,抗糖尿病药物二甲双胍对乳腺癌的发病起抑制作用。
4 小结与展望
综上所述,糖尿病可以通过胰岛素抵抗、胰岛素/IGF相关信号通路等机制促进乳腺癌的发生和发展。脂肪细胞产生的多肽类激素可以通过不同的机制对糖尿病和乳腺癌起不同作用,如脂联素起保护作用,而瘦素的作用与之相反。随着对miRNA研究的不断深入,发现其在糖尿病和乳腺癌中的表达谱发生了不同程度的失调。另外,越来越多的证据提示二甲双胍能通过多种途径起抗肿瘤作用,但其具体作用机制仍待进一步阐明。我们相信,随着这些转化研究的不断深入,其成果可能会为糖尿病和乳腺癌的防治提供新的视角。
参 考 文 献
[1] Hardefeldt PJ, Edirmanne S, Eslick GD. Diabetes increases the risk of breast cancer: a meta-analysis[J]. Endocr Relat Cancer, 2012, 19(6): 793-803.
[2] Schrauder MG, Fasching PA, Haberle L, et al. Diabetes and prognosis in a breast cancer cohort[J]. J Cancer Res Clin Oncol, 2010,137(6): 975-983.
[3] Chen WW, Shao YY, Shau WY, et al. The impact of diabetes mellitus on prognosis of early breast cancer in Asia[J].Oncologist, 2012,17(4): 485-491.
[4] Erickson K, Patterson RE, Flatt SW, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer[J]. J Clin Oncol, 2011, 29(1): 54-60.
[5] Srokowski TP, Fang S, Hortobagyi GN, et al. Impact of diabetes mellitus on complications ans outcones of adjuvant chemotherapy in older patients with breast cancer[J]. J Clin Oncol, 2009,27:2170-2176.
[6] Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer[J]. Clin Sci, 2009, 118(5):315-332.
[7] Wolpin BM, Bao Y, Qian ZR, et al.Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer[J]. J Natl Cancer Inst, 2013, 105(14): 1027-1035.
[8] Key TJ, Appleby PN, Reeves GK, et al. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies[J]. Lancet Oncol, 2010, 11(6): 530-542.
[9] Gu Y, Wang C, Zheng Y, et al. Cancer incidence and mortality in patients with type 2 diabetes treated with human insulin: a cohort study in Shanghai[J]. PLoS One, 2013, 8(1): 53411.
[10] Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report[J]. CA Cancer J Clin, 2010, 60(4): 207-221.
[11] Busaidy NL, Farooki A, Dowlati A, et al.Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway[J]. J Clin Oncol, 2012, 30(23): 2919-2928.
[12] Nakamura K, Sasajima J, Mizukami Y, et al. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells[J]. PLoS One,2010, 5(1): 8824.
[13] Jiralerspong S, Kim ES, Dong W, et al. Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients[J]. Ann Oncol, 2013, 24(10):2506-2514.
[14] Gokulakrishnan K, Aravindhan V, Amutha A, et al. Serum adiponectin helps to differentiate type 1 and type 2 diabetes among young Asian Indians[J]. Diabetes Technol Ther, 2013, 15(8): 696-702.
[15] Gulcelik MA, Colakoglu K, Dincer H, et al. Associations between adiponectin and two different cancers: breast and colon[J]. Asian Pac J Cancer Prev ,2012, 13(1): 395-398.
[16] Del Socorro Romero-Figueroa M, Garduno-Garcia JD, Duarte-Mote J, et al. Insulin and Leptin Levels in Obese Patients With and Without Breast Cancer[J]. Clin Breast Cancer, 2013, 28(13):175-181.
[17] Mohammadzadeh G, Zarghami N. Serum leptin level is reduced in non-obese subjects with type 2 diabetes[J]. Int J Endocrinol Metab, 2013, 11(1): 3-10.
[18] Santillan-Benitez JG, Mendieta-Zeron H,Gomez-Olivan LM, et al. The tetrad BMI, leptin, leptin/adiponectin (L/ A) ratio and CA 15-3 are reliable biomarkers of breast cancer[J]. J Clin Lab Anal ,2013,27(1): 12-20.
[19] Guo S, Liu M, Wang G, et al.Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells[J]. Biochim Biophys Acta,2012, 1825(2): 207-222.
[20] Chabre O, Libe R, Assie G, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients[J]. Endocr Relat Cancer, 2013, 20(4):579-594.
[21] Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF[J]. Cancer Res, 2010, 70(9): 3606-3617.
[22] Qi L, Bart J, Tan LP, et al. Expression of miR-21 and its
targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma[J]. BMC Cancer,2009, 9:163.
[23] Bao L, Yan Y, Xu C, et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways[J]. Cancer Lett, 2013, 337(2):226-236.
[24] Yu X, Zhang X, Dhakal IB, et al. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells[J]. BMC Cancer, 2012,12: 29.
[25] Vogt M, Munding J, Gruner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpGmethylation in colorectal pancreatic mammary ovarian urothelial and renal cell carcinomasand soft tissue sarcomas[J]. Virchows Arch , 2011, 458(3):313-322.
[26] Kim HR, Roe JS, Lee JE, et al. P53 regulates glucose metabolism by miR-34a[J]. Biochem Biophys Res Commun, 2013, 437(2):225-231.
[27] Peurala H, Greco D, Heikkinen T, et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer[J]. PLoS One, 2011, 6(11): e26122.
[28] Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study[J]. Acta Diabetol ,2010, 48(1):61-69.
[29] Yun J, Frankenberger CA, Kuo WL, et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer[J]. EMBO J , 2011,30(21): 4500-4514.
[30] Zhao Y, Deng C, Wang J, et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer[J]. Breast Cancer Res Treat, 2011,127(1): 69-80.
[31] Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by theLet-7 family of microRNAs[J]. Proc Natl Acad Sci USA, 2011,108:21075-21080.
[32] Qian P, Zuo Z, Wu Z, et al. Pivotal role of reducedlet-7 g expression in breast cancer invasion and metastasis[J]. Cancer Res , 2011,71:6463-6474.
[33] Bodmer M, Meier C, Krahenbuhl S, et al. Long-term metformin use is associated with decreased risk of breast cancer[J]. Diabetes Care, 2010, 33(6): 1304-1308.
[34] Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer[J]. J Clin Oncol, 2009,27(20): 3297-3302.
[35] Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibitsmammalian target of rapamycin-dependent translation initiation in breast cancer cells[J]. Cancer Res , 2007, 67:10804-10812.
[36] Brown KA, Hunger NI, Docanto M, et al. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase[J]. Breast Cancer Res Treat, 2010,123(2): 591-596.
[37] Schott S, Bierhaus A, Schuetz F, et al. Therapeutic effects of metformin in breast cancer: involvement of the immune system[J]. Cancer Immunol Immunother , 2011,60(9): 1221-1225.
[38] Iliopoulos D, Hirsch HA, Wang G, et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion[J]. Proc Natl Acad Sci U S A, 2011, 108(4): 1397-1402.
[39] Vazquez-Martin A, Oliveras-Ferraros C, Del-Barco S, et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells[J]. Breast Cancer Res Treat , 2011,126(2): 355-364.