数学教学应积极渗透数学思想与方法
2017-07-29李晓燕
李晓燕
【摘 要】 数学教学,不仅要传授知识,更重要地是渗透数学思想和方法。这是培养学生数学应用实践能力的最有效方式,也是数学在促进学生创新思维培养中产生不可替代作用的重要原因。
【关键词】 初中数学;思想与方法;渗透;加强
【中图分类号】 G632.1 【文献标识码】 A 【文章编号】 2095-3089(2017)16-0-01
数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁,是培养学生创新思维和实践能力的核心思想。新课标明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。这里把“由其内容所反映出来的数学思想和方法”作为“初中数学的基础”,充分体现了素质教育的思想。由此可见,让学生理解并掌握数学思想是由“应试教育”向“素质教育”转轨的关键所在。作为一名数学教师,在强调实施素质教育的今天,进行数学思想的渗透教学,是义不容辞的责任。下面仅就教材中用得较多的重要数学思想与方法,谈谈自我看法。
一、方程思想——数学大厦的基石
方程思想是一种重要的数学思想。所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。方程思想是初等代数的主体,是数学大厦的基石。在初中数学教材中先后五次出现,正是意在强化方程思想的渗透。教师只有领悟到这一点,才能在数学教学中自觉地、主动地进行这种思想的教育。如初一开始讲到列方程解应用题时,不少学生很难从算术法中解脱出来,许多问题任然习惯用算术法去解答,甚至出现先用算术法解,再把未知数补上的令人啼笑皆非的情况。这时,向学生进行方程思想的教学已成为当务之急。教师应该告诉学生,方程思想的根本实质就是未知数和已知数以等同的地位参与列式。因此,未知数位置没有任何限制,与算术法要求的未知数在一边、已知数则在另一边相比,极大地简化和加速了思维的进程。同时还应该告诉学生,这种方程思想具有十分重要的应用价值,它可以使许多极其复杂的数学问题,通过一个方程或一个方程组,轻易而举地得到解决。这样的教学,会使众多的学生形成初步的方程意识。以后再进行方程教学时,一方面要巩固、加强学生初步形成的方程思想,另一方面还要以方程思想为主线,抓住时机向学生进行多种其它数学思想的渗透,如换元思想、消元降次思想、函数思想、分类思想、转化思想等,让学生知道方程思想的内涵极其丰富。这样再抓方程思想的教学,定能起到拨亮一盏灯,照明一大片的作用。
二、数形结合思想——数学本质的体现
数与形是数学中的两个最古老,也是最基本的研究对象。数与形的关系是数学中不可分割的关系,它们在一定条件下可以相互转化。数以形而直观,形以数而入微。一般说来,据形想数,使几何问题代数化;由数想形,使代数问题几何化。这样数形结合,相辅相成,既有利于开拓解题思路,又有利于发展思维能力。例如,在△ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F。求AF、BD、CE的长。解:设AF=xcm,BD=ycm,CE=zcm,由切线长定理得AF=AE=xcm,BF=BD=ycm,CE=CD=zcm,结合图形,列出方程组:
x+y=13
y+z=14 (解略)
z+x=9
把本题结论中的三个量设成未知数,利用切线长定理,得出三元一次方程组,从而把复杂的几何问题转化为代数问题,问题就简单化了。这也是用代数法解几何题的一种重要思想。学生具有这种思想,不仅可以提高他们思维的迁移能力,还可以提高他们数学的数形转换能力。
三、化归思想——经久不衰的观点
美籍匈牙利数学家波利亚曾指出:“解题就是把习题归纳为已经解过的问题。”像这样用化归方法解决问题的思想倾向,就称为化归思想。化归的实质就是把新问题转化为已经解决的问题来解决,把复杂的问题转化为简单的问题来解决。
以下列二元一次方程组为例,来说明化归思想的实质:
x+y=25 ①
2x-y=8 ②
这道题的解题思路是:
(1)在方程①中,暂时把某一个未知数(比如x)看成是已知数,解出另一个未知数:y=25-x ③
(2)看这个解中哪些是方程②的解,将③代入②得到x的值。
师生共同分析,理清以上解题思路后,学生就明白了解二元一次方程组就是将它化归为一元一次方程的道理。
四、重视数学思想的教学——学生主体地位的体现
古人云:“授人以鱼,不如授之以渔”。它深刻地道出了思想和方法的重要性,道出了教学中教师主导与学生主体的关系。作为一名数学教师,应针对教材中基本思想不太直观的特点,明确恰当地讲解与渗透,特别是在解题教学中,应重视思路分析,提炼出具有普遍意义的数学思想方法,站在方法论的高度,讲出学生在课本的字里行间看不出的“奇珍异宝”,讲出决策和创造方法,培养学生逻辑推理的能力,然后有计划地、系统地加以训练,帮助学生真正掌握数学思想,这样将使学生受益终身。
世界著名数学家华罗庚说得好:“居高才能临下,深入才能浅出”。在教学中自觉主动地渗透数学思想,并一以贯之,应当说是一种高角度的教学。对学生而言,当然就方向明确,心里亮堂,学习起来就会有趣、轻松。要搞好这样的教学,教师不仅要发挥学生的主体作用,启发引导并组织学生参与概念形成、结论推导、方法思考、思路探索、规律揭示等过程,而且要做到精心设计、有机结合、自然渗透。同时还要重视学生认识思维的展开,结合教材多供给学生足够的感知材料,多创设问题情境,使数学思想在平时的教学过程中自然的滲透。
总之,“知识是躯体,问题是心脏,思想是灵魂,方法是行为。”作为执教者,应充分以教材为载体,不但重视躯体与行为,更应重视灵魂的渗透,把提高学生的素质落实到数学教学的全过程,这正是适应二十一世纪人才素质需要的根本要求。
参考文献:
[1]刘梅,重视数学思想方法的渗透[J].云南教育,2004年。
[2]旷劲松,在初中数学教学中渗透数学思想和数学方法[J].试题与研究,2014年。
[3]陈再芳,分析初中数学中的数学思想和数学方法[J].都市家教,2013年。