APP下载

数形结合 贴近数学本质

2017-05-04吴元井

新课程·小学 2017年3期
关键词:数学本质数形结合

吴元井

摘 要:《义务教育数学课程标准(2011年版)》指出:几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

关键词:图形表示;数形结合;数学本质

【情境描述】

教学两位数乘两位数:

【教学片段】

一、用图形表示

师:14×12是什么意思呢?

生:12个14是多少?

师:如果用一幅图来表示,你想想看12个14是怎么样的呢?

学生独立用图来表示。

师:你们想的图和老师的图是否一样呢?请拿出老师课前发给你的练习纸(印有14乘12的点子图)

二、用图形帮助理解

师:14×12还没有教,你们能否根据图,来圈一圈、算一算14×12呢?

学生第一次尝试做。

反馈1:

生1:我算不出来,就数一下小点有多少个?

师:这也是解决问题的方法,我们可以数出来。有没有同学有不同的算法吗?老师现在有两位同学的方法,他们都是用乘法算式来解决的,你能看懂吗?

生2:14×4=56 56×3=168

生3:14×6=84 84×2=168

師:如果再给你一次机会,你们会怎么分呢?

学生再一次尝试做。

反馈2:

生4:14×10=140 2×14=28 140+28=168(这样的学生全班5、6名)

师:你能看得懂吗?图上又该怎么样来表示?

师:这些方法,有什么相同的地方?

生1:先分算的,再合起来。

师:哪一种方法比较好呢?为什么?

生齐说:第三种好。

【分析与反思】

一、教学现象分析

1.用图表示算式

学生用图来表示比较困难。如果用一幅图来表示,你想想看12个14是怎么样的呢?给我们的感觉是,老师要我用图来表示就用图来表示吧。也就是说用图的需求不强;学生用图表示指向性不强。

2.有图怎么用

学生的第一次尝试,很多的学生一头雾水,不知道要干什么?图给出的目的性不强。有部分学生的思维是:10×10+4×2。在尝试中,学生寻找到的解决方法:14×4=56 56×3=168;14×6=84 84×2=168;却没有我们想要的第三种,14×10=140 2×14=28 140+28=168。只好在看懂前面两种的基础上,再次让学生去尝试。

3.用图如何突破

14×12,有较多学生的想法:先算10×10,再算4×2,最后相加。我们在教学中如何利用几何直观来突破难点。

二、教学后反思

1.画图要明确

在备课时,担心学生出不来点子图,故在教学中问学生:如果用一幅图来表示,你想想看12个14是怎样表示呢?其实这句问话的指向性是不强的。如有学生画长方形来表示,有学生画线来表示。这样问会不会更好一些:如果用我们以前熟悉的点子图来表示,你想想看12个14点子图是怎么样的呢?

2.用图要充分

有人说:计算是程序性的教学,思维含量比较低,重要是在计算前用什么样的材料,怎么用是计算教学的重要部分。如果我们把干扰计算探索的因素都排除了,对于学生的思维发展有没有影响。就如这样教学:

出示点子图,现在知道他是怎么算的了吧?

生:全数的。

师:我们已经三年级了,你还会一个一个去数吗?你会怎么去数?

学生会说一排一排,几排几排……

把上面的教学片段中的两次尝试合并成一次进行教学。充分利用图,也充分利用学生的想法。

3.利用图突破难点

14×12,有较多学生会想:先算10×10,再算4×2,最后相加。这样想的学生就是看算式,利用加法的个位加个位,十位加十位的知识迁移到乘法中来。当我们用点子图来呈现这题算式时,我们就自然地突破了学生的负迁移。

参考文献:

[1]李昂.上海一、二期课改高中地理教材比较[J].新课程(综合版),2009(10).

[2]张元文.上海市中小学体育课程改革回顾与展望[J].体育科研,2009(5).

编辑 王亚青

猜你喜欢

数学本质数形结合
培养初中生数学思维能力的“回顾反思”策略探析
数学教学要注重数学的本质
抓住问题本质渗透归纳类比数学思想
数形结合在解题中的应用
用联系发展的观点看解析几何
注重心理关怀,避开人为陷阱