骨形成蛋白Ⅱ型受体信号通路与肺动脉高压:新进展与希望
2017-04-10向莉莉李晓晖
王 瑾,向莉莉,李晓晖
(中南大学湘雅药学院药理学系,湖南长沙 410078)
·前沿论坛·
骨形成蛋白Ⅱ型受体信号通路与肺动脉高压:新进展与希望
王 瑾,向莉莉,李晓晖
(中南大学湘雅药学院药理学系,湖南长沙 410078)
李晓晖,中南大学湘雅药学院副教授,硕士生导师,院长助理。英国剑桥大学与中南大学联合培养博士。中南大学“升华育英”计划入选者,中南大学“创新驱动”计划获得者。现为中国药理学会心血管专业委员会委员、中国生物工程学会转化医学专业委员会委员、国际肺血管研究院成员、欧洲呼吸学会会员。主要研究领域为肺动脉高压分子机制与药物防治及小分子RNA与心血管疾病。发表SCI论文近30篇,参与编著1部,申请专利6项,主持国家自然科学基金、湖南省科技计划和中国博士后基金特别资助等多项科研基金。
骨形成蛋白2型受体(BMPR2)基因突变与肺动脉高压(PAH)关系的揭示被认为是21世纪该研究领域最重大的发现之一。BMPR2基因突变与大部分遗传性PAH和部分特发性PAH患者的发病有关。临床和动物研究均表明,BMPR2介导的BMP信号通路在PAH发生发展过程中扮演重要角色。近年来,不断深入的研究逐步揭示了BMPR2信号通路参与PAH发病的重要机制,以该信号通路为治疗靶点的可能性正被逐渐揭示。本文以BMPR2信号通路与PAH的关系为基础,从遗传学、表观遗传学和炎症反应机制等角度进行综述,介绍PAH研究领域的最新进展。
肺动脉高压;骨形成蛋白;遗传学;表观遗传学;炎症
肺动脉高压(pulmonary arterial hypertension,PAH)是一类以肺动脉压力持续升高为临床特征的疾病,普通人群发病率约为百万分之二[1],其中年轻女性的发病率较高(男女比例大概为1∶2.3)[2]。肺血管收缩、血管重构和原位血栓形成是PAH的三大病理基础。肺血管阻力的持续增大加重右心室后负荷,最终引起右心室衰竭甚至死亡[3-4]。PAH的具体发病机制目前仍不清楚,遗传因素和环境因素共同参与了疾病的发生发展。2000年,2个独立研究小组均发现,骨形成蛋白Ⅱ型受体(bone mor⁃phogenetic protein receptorⅡ,BMPR2)基因突变是家族性PAH发病的重要原因,首次揭示了PAH发病的遗传学基础。此后,有关BMPR2信号通路与PAH的研究成为该领域的研究热点与焦点。近年来,众多研究者从遗传学、表观遗传学和药理学等多角度开展了系列研究,探索以BMPR2信号通路为靶点治疗PAH的潜在可能性。这些发现为攻克这一“心血管系统肿瘤”提供了新证据和新思路。
1 骨形成蛋白信号通路与肺动脉高压
1.1 BMPR2基因突变与肺动脉高压
BMP是转化生长因子(transforming growth factor,TGF)超家族中一类重要的细胞因子。研究表明,BMP能调节多种细胞包括间叶细胞和表皮细胞的生长、分化和凋亡,在胚胎发育中发挥关键作用,也广泛参与成熟组织维护和修复等[5-6]。BMPR是位于细胞膜上的丝氨酸/苏氨酸受体,一般由Ⅰ型和Ⅱ型2个亚型组成。通常认为,BMPR如BMPR2被激活后,通过磷酸化激活胞质内Smad蛋白或丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)并入核,最终调节下游基因的转录与表达[7-8]。
自2000年以来,BMPR2基因突变与PAH发生之间的密切关联已经被大量研究证实。研究提示,BMPR2基因突变主要引起BMPR2受体表达降低或缺失,BMP信号通路受损,进而影响肺血管细胞增殖、迁移和凋亡等。目前研究发现,55%~70%的遗传性PAH和11%~40%的特发性PAH与BMPR2基因突变相关[9-12]。不仅如此,BMPR2基因突变及其介导的BMP信号通路受损也见于其他非遗传性PAH患者和多种PAH动物模型,如在系统性硬化病引起的PAH患者中发现,BMPR2的蛋白水平显著降低。除了BMPR2基因突变之外,BMPR2表达降低和功能紊乱的重要原因还包括蛋白泛素化水平上调和溶酶体酶降解增加等机制[13-15]。最新研究发现,BMP9治疗可显著改善PAH的发生发展,这一作用与恢复上调肺血管内皮BMPR2信号通路有关[15-17]。
人们发现,并不是所有BMPR2突变基因携带者都患PAH。进一步研究表明,突变外显率只有27%,女性(42%)高于男性(14%)[18-19]。其原因至今未知,提示可能还存在其他因素影响PAH的发生发展。此外,BMPR2基因敲除小鼠并不能自发形成PAH,提示BMPR2基因突变可能仅是PAH发病的遗传学基础或易感因素。另有BMP信号通路下游效应蛋白,如分化抑制因子(inhibitor of differen⁃tiation,Id)在发病过程中起关键作用,或者存在“第二重打击”(the second hit),如炎症反应而触发PAH的发病过程[20]。该假说已获得研究者的认同,也成为当前有关研究领域的热点。
1.2 分化抑制因子与肺动脉高压
Id蛋白是一种拥有碱性螺旋-环-螺旋结构域的转录调节因子。自1990年被发现以来,共定义4种Id蛋白(Id1~Id4),它们的表达、功能和分布各有不同[21-23]。通常认为,Id蛋白通过与其他基本型转录因子(主要是E蛋白家族成员)结合形成二聚体,进而阻断下游基因转录过程,发挥负性调控作用[24]。
最新研究表明,肺动脉平滑肌细胞(pulmonary arterial smooth muscle cells,PASMC)中的Id蛋白,尤其是Id1和Id3是BMP信号通路下游关键的效应蛋白[20,25]。当Id蛋白的表达出现异常时,可能会引起PASMC增殖和血管重构等病理转化[26],这正是PAH重要的病理特征和干预环节。首先,当用一系列生长因子和细胞因子如血小板衍生因子、BMP4、BMP6、BMP9、血管紧张素Ⅱ和血清素等刺激人PASMC时,BMP4和BMP6上调Id蛋白的表达最为显著;在BMPR2基因突变或用siRNA沉默BMPR2模型中进一步发现,BMP刺激Id1和Id3表达的效果均被明显抑制,这提示PASMC中Id蛋白特别是Id1和Id3的表达受BMPR2严格调控。同时,用siRNA干扰沉默Id1和Id3的表达后,发现BMP4抑制人PASMC生长的作用显著减弱;反之,当用慢病毒转染使Id3在PASMC中过表达后,细胞周期被阻滞于G1期,细胞增殖被显著抑制,而细胞凋亡却无显著变化[25],进一步提示Id蛋白直接参与了PASMC增殖的调控。整体动物研究发现,Id蛋白下调也可见于低氧型PAH小鼠和野百合碱诱导的PAH大鼠等多种动物模型;西地那非、曲前列素及依前列素等药物抑制肺血管重构、改善肺动脉高压症状的同时,也观察到Id蛋白的表达同步上调[27-29]。临床病理检测进一步提示,BMPR2基因突变型PAH患者肺血管Id蛋白的表达显著下调。
综上所述,BMP/BMPR2信号通路在PAH的形成过程中发挥着至关重要的作用。而Id蛋白可能是BMP信号通路下游的关键效应分子,通过介导BMP信号调控肺血管细胞增殖、迁移等生理过程参与PAH的发生发展。目前,BMP/Id信号通路在PAH机制研究的关键在于寻找和筛选出与Id蛋白结合的转录因子和调控靶点,并且在动物整体水平进行验证,从而揭示Id蛋白介导PAH血管重构的分子机制及重要意义。
2 PAH的遗传学机制和表观遗传学机制
PAH是由多种原因引起的疾病,遗传和环境是其最重要的两大因素。自1951年首例PAH被报道至1984年,相继发现13个PAH家系,PAH被确定为一种单基因常染色体显性遗传病。遗传因素在PAH发生过程中扮演着十分重要的角色。尤其是2000年,科学家成功克隆出第一个PAH致病基因BMPR2,是目前已知的最主要的PAH致病基因之一;其他 7个致病基因分别为BMPR1B[30],ALK1[31],CAV1[32],Endoglin[33],KCNK3,SMAD8[34]和EIF2AK4[35];2个修饰基因分别为KCNA5[36]和CBLN2[37]。研究表明,除了遗传学因素,表观遗传学同样参与了PAH的发生机制。以微RNA(microRNA,miRNA)为代表的表观遗传学研究已经成为该领域的研究热点之一。相继发现和报道50多个相关miRNA,其中与BMP信号通路相关的miRNA是本文论述的重点。随着基因组学和测序技术的不断发展,遗传学研究将取得更大进展。
2.1 遗传学研究与PAH的发生机制
BMPR2基因突变与PAH密切相关已经被广泛认可[38-39],但是其具体作用机制仍不完全清楚。目前主要存在2种理解,即突变产生显性负效应和突变引起表达量降低[40-41],进而影响其介导BMP信号发挥肺血管保护作用,诱发血管重构,最终导致PAH的形成。以BMPR2突变为基础的遗传学研究在PAH机制探索中发挥着十分重要的作用。
2.1.1 种族和性别差异
在不同种族和人群中的研究发现,BMPR2基因突变存在一定种族和性别差异。在亚洲人群中,中国人特发性PAH患者BMPR2基因突变率为14.5%(n=290),遗传性PAH患者中BMPR2突变率为53.3%(n=15),而日本PAH患者中BMPR2的突变率分别为35%(n=40)、57%(n=7)[42]。另外发现了25个未在欧美人群中报导的BMPR2突变位点[43]。欧美人群中,BMPR2基因突变率总体一致,稍有区别。以土耳其人为代表,数据显示特发性PAH患者BMPR2错义突变率为12.5%[44-45]。性别差异对BMPR2突变后的表型变化有显著影响。最近一项在中国PAH人群中的研究结果显示,BMPR2基因突变对中国男性患者的影响要比女性明显,虽然整体来说女性发病率高于男性。BMPR2基因突变的男性患者表现为更高的死亡率和更差的血流动力学状态,而且发现雌激素在这个过程中发挥重要作用[46-47],不同的是,另一个独立研究小组在法国PAH人群中的类似研究却得出不同结论,认为性别对BMPR2突变的表型变化没有影响[48]。这可能跟种族差异和样本量大小有关。深入揭示种族和性别的差异对于PAH的精准治疗将具有重要的指导意义。
2.1.2 BMPR2相关基因突变
近年来研究表明,某些与BMPR2密切相关的基因发生突变,同样与PAH的发生有关。如通过对PAH家系进行全外显子组测序,发现小窝蛋白1(Caveolin-1,CAV1)基因存在2个移码突变,可能通过激活自噬系统增加溶酶体对BMPR2的降解以及调节内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)通路等多种途径参与到PAH发生过程,因此CAV1被认为是一种新的PAH致病基因[49]。另一个相关基因是活化素受体样激酶1(activin A receptor type II-like kinase-1,ACVRL1)基因,也称ALK1(activin receptorlike kinase 1),它与BMPR2同属于TGF受体家族成员。以往的研究表明,ALK1突变可以引起遗传性出血性毛细血管扩张症。最新的研究发现,在肺动脉内皮细胞中,ALK1可以通过与BMP9配体结合,促进Smad1/5/ 8磷酸化和Id蛋白的表达,影响血管新生。ALK1和BMPR2通过BMP信号通路决定内皮细胞命运,影响肺动脉内皮细胞的完整性,从而参与到PAH的发生发展过程。动物实验证实,用BMP9选择性上调内皮细胞中BMPR2的表达,可以缓解PAH症状[16,50-53]。另外,编码DNA拓扑异构酶Ⅱ结合蛋白1(DNA topoisomerase 2-binding protein 1,TopBP1)基因发生突变,也可能诱发PAH,因为TopBP1可保护BMPR2缺陷造成的DNA损伤[54]。对324名PAH患者(特发性PAH病例数:其他疾病相关性PAH病例数=188∶136)进行了基因分析,在Smad1,4和9中发现了4种变异体,揭示了Smad家族突变成为PAH发生的原因之一[55]。当前许多国家正在开展PAH基因分析工作。美国正在进行上千例特发性PAH患者全基因组关联分析(genome wide asso⁃ciation study,GWAS);英国开展了全国性的PAH患者注册研究;其他国家包括我国也正开展相关研究。随着基因测序技术的突破和研究的深入,越来越多的易感基因如KCNK3,Endoglin,SMAD8,EIF2AK4和KCNA5等将被揭示,全面揭示PAH发病的遗传学机制和特点将成为可能。
2.2 表观遗传学研究
除了遗传学上的进展,PAH表观遗传学研究也有新的突破。目前,有关PAH的表观遗传学研究包括3个方面的内容,即DNA的甲基化调节、组蛋白修饰和miRNA调控[56]。
2.2.1 DNA的甲基化调节和组蛋白修饰
DNA的甲基化调节是指在甲基转移酶的参与下,DNA的2个核苷酸胞嘧啶被选择性地添加了甲基,形成5-甲基胞嘧啶的过程;组蛋白修饰包括乙酰化和去乙酰化2种,它们都是DNA的翻译后修饰形式。国内外研究报道,BMPR2的表达与DNA的甲基化呈负相关,甲基化程度越高,基因表达越低[57]。虽然到目前为止,关于BMPR2信号通路在上述2种表观遗传学过程的研究还没有深入展开,尤其是组蛋白修饰过程,但,DNA的甲基化调节和组蛋白修饰过程涉及到炎症反应和DNA损伤环节,以及肺动脉平滑肌细胞、肺动脉内皮细胞和成纤维细胞的抗凋亡、促增殖过程,这些过程已知又与BMPR2信号通路有着千丝万缕的联系,值得更深入的探讨[57]。
2.2.2 非编码RNA的调节
非编码RNA是一类不能编码蛋白质的RNA。miRNA是一种长度为21~25个核糖核苷酸的非编码小单链RNA。miRNA虽然不能编码蛋白质,但却可以通过碱基互补配对与目标RNA结合,降解mRNA或者抑制其翻译,在转录后水平调节基因表达,成为表观遗传学机制研究的重要内容。虽然具体机制还不清楚,但研究表明,miRNA参与了PAH的发生发展过程,且主要与肺血管稳态的调控有关,影响肺动脉血管重构过程[58-59]。
到目前为止,已经相继发现数十种miRNA与PAH相关[60-62],如发现miR322、miR-21、miR-27a、miR-17-92簇、miR-143/145簇、miR-190和miR-210等数种miRNA表达在PAH患者或实验模型中显著升高,而miR-150,miR-124,miR-204和miR-424/ 503等miRNA的表达明显减少[58-59,63],甚至不同病程的PAH患者体内miRNA水平也有差异。进一步研究表明,造成这些变化的调控机制也不尽相同,如miR322在低氧刺激下靶向作用于BMP1ASmad5通路,下调其表达,促进低氧诱导因子的积累从而引起PASMC增殖、迁移和病变;miR-190在缺氧条件下是通过电压门控钾离子通道家族成员KCNQ5下调,促进钙离子内流影响血管收缩功能[64-66];而miR-424/503的变化则可能与Apelin信号调节相关[67-69];miR-124则可能与Notch1/PTEN/ FOXO3/p21Cip1/p27Kip1通路有关[70-71]。
miRNA与BMP信号通路间之间存在重要的相互影响。研究表明,BMPR2是miR-21的靶基因之一,miR-21可以通过抑制BMPR2表达来影响PASMC的表型变化,并很可能在肺动脉内皮细胞(pulmonary artery endothelial cells,PAEC)中也发挥着同样作用[72]。在低氧和野百合碱诱导的PAH小鼠模型及低氧处理的患者PASMC中,miR-21上调引起BMPR2表达减少,miR-21与BMPR2似乎存在一种负反馈调节通路[73];类似的还有miR-143-145系列,在BMPR2突变和BMPR2 R899X基因敲入小鼠的PASMC中其表达明显增多,且用miR-145中和抗体治疗可以改善PAH症状,提示miR-143-145 miRNA可以通过调节PASMC的表型变化参与PAH过程[74]。研究表明,miR-17-92系列(miR-17,miR-18a,miR-19a,miR-20a,miR-19b-1和miR-92-1)通过IL-6/STAT3通路下调BMPR2,发挥促增殖和抗凋亡作用[75-76]。miR-17和miR-20a都属于miR-17-92簇成员。研究发现,它们都可以抑制BMPR2的表达,且用miR-17中和抗体及miR-20a拮抗剂治疗后,BMPR2表达增多,PAH症状得到改善[77]。最近有研究指出,miR-424/503在PAH中表达下调,可能通过成纤维细胞生长因子2(fibro⁃blast growth factor 2,FGF2)及其受体FGFR1作用于内皮细胞Apelin信号通路[68],后者被认为可通过恢复BMPR2信号和内皮功能紊乱以改善小鼠PAH症状[69],提示miR-424/503可通过Apelin信号通路影响BMPR2水平,干预PAH过程。另外,在BMPR2基因缺失小鼠的PASMC中,miR130/310表达上调,参与调节PASMC增殖和PAEC功能紊乱,诱导PAH发生发展[78-79]。
miRNA与BMP信号通路间的作用是相互的,miRNA在调节BMP信号表达的同时也受BMP信号的影响。比如在用BMP4处理野百合碱诱导的动物PAH模型时,它可以下调miRNA-21的表达,缓解PAH症状[80]。同样用BMP4处理人的原代PASMC时发现,miR-302/367簇表达受到抑制,BMP/Id信号得到增强[81],且这种调节依赖于Smad蛋白。核苷酸药物已经在丙型肝炎治疗等领域取得了突破性进展,miRNA作为PAH治疗的潜在靶点,可能是治疗PAH的另一选择。
BMP信号通路相关的miRNA信息汇总见表1。
3 炎症反应参与PAH的发生发展:第二重打击?
炎症反应在PAH发生机制中的研究已经成为一个热点。虽然具体机制目前仍不清楚,但是炎症作为PAH发生发展过程中的重要病理变化却毋庸置疑。大量的动物实验和临床研究数据表明,与正常对照组对比,PAH患者和模型动物外周血浆、血管受损部位以及肺部组织中炎症因子或趋化因子的水平均发生显著变化。如IL-1,IL-2,IL-4,IL-6,IL-8和TNF-α等水平明显升高,而IL-10却显著下降[84-88],并且这些变化可以直接预示患者的生存率和预后情况;甚至某些炎症性疾病本身就能诱发PAH,如结缔组织病、HIV感染、血吸虫感染以及类风湿性关节炎等。更重要的是,给予糖皮质激素、环磷酰胺、霉酚酸酯和雷帕霉素等抗炎药物治疗能明显改善PAH症状[89]。但是炎症反应参与PAH的具体机制是什么以及抗炎治疗能否作为PAH治疗的新选择这些问题至今仍不清楚。炎症反应可能是基于遗传病变基础上的“二重打击”,参与到PAH的发生发展。
最新研究表明,BMPR2基因敲除小鼠和基因突变的人源PASMC中,磷酸化STAT3和超氧化物歧化酶表达降低,且在脂多糖急性刺激后,两者的炎症因子IL-6和KC/IL-8的水平均升高。在脂多糖慢性诱导下,BMPR2敲除小鼠成功诱发PAH且给予超氧化物歧化酶模拟物四甲基哌啶治疗后,炎症被抑制,PAH症状得到缓解[90]。还有研究报道,PAH患者肺组织中炎症细胞浸润的同时伴随BMP信号明显减弱;广谱抗炎药地塞米松可以阻止甚至逆转野百合碱诱导的大鼠PAH症状,进一步发现其机制可能与抑制IL-6表达、恢复BMPR2信号以及抑制血管平滑肌细胞增殖有关[91]。
表1 骨形成蛋白(BMP)信号通路相关微RNA(miRNA)
炎症干预BMP信号通路的具体机制仍不清楚。相关研究提示,BMP4可以通过BMPR2信号激活心肌蛋白相关转录因子A(myocardin-related transcription factor A,MRTF-A),从而抑制NF-κB的表达。参与免疫反应的早期和炎症反应各阶段的许多分子都受NF-κB的调控,抑制NF-κB表达可以恢复PASMC对TGF-β1引起的抗增殖应答[92-93];在肺血管内皮细胞中,BMPR2缺失不仅能诱导炎症因子的表达,而且也能促进血管外白细胞进入肺动脉壁,两者共同诱导了血管炎症的发生。体外实验表明,BMPR2缺失的内皮细胞经TGF-α或TGF-β刺激后,白细胞转移明显加强,且这种转移依赖于趋化因子受体2,内皮细胞中的BMPR2似乎能调节趋化因子受体2,后者则对白细胞的转移产生影响。因此,利用趋化因子受体2信号通路,有可能找到一种治疗PAH的新思路[94-95]。一直以来,IL-6和IL-8等几种炎症因子是人们关注的重点,尤其是它们在平滑肌细胞中的表达和作用被认为与PAH的发生有重要联系[96-98]。最近有研究表明,IL-6和BMP/BMPR2共同参与了PAH的发生过程[76,99],用腺病毒转染过表达和siRNA沉默等手段抑制转基因小鼠和人PASMC中BMPR2表达,检测发现不仅2种模型中IL-6的水平均明显升高,而且BMPR2下游Id1蛋白的表达也显著增加,且用P38MAPK抑制剂可以阻断这些变化。表明IL-6与BMP/ BMPR2通路间有某种负性反馈调节回路。进一步研究发现,IL-6可以通过STAT3/miR17/92通路调节BMPR2的表达[76]。
近年来不断发现有新的炎症诱导因子可能参与PAH的发生发展过程。如高迁移率族蛋白1(high mobility group box-1 protein,HMGB1)和IL-33等。研究发现,PAH患者血浆和病变血管部位HMGB1水平显著升高,HMGB1能上调野百合碱诱导PAH大鼠体内其他炎症因子水平如TNF-α,引起肺动脉壁肥厚以及右心室收缩压升高。而用抗体中和或抑制剂阻断HMGB1作用后,PAH症状显著改善[100-102];此外,核IL-33也可通过调节IL-6和sST2表达影响PAH的发生,因而在PAH的发生机制中扮演着重要角色[103]。炎症反应与BMP/BMPR2信号通路之间的直接关联被逐步揭示。一方面,BM⁃PR2信号通路的功能失调可能诱导炎症的加重;另一方面,炎症反应可能作为“第二重打击”,在BMP/ BMPR2信号缺失的基础上诱发PAH。抗炎治疗已在动物实验中取得理想效果,多项临床试验也正在开展,抗炎治疗有望成为PAH治疗新策略。
4 与BMPR2信号通路相互作用的其他重要信号通路
PAH发病是一个复杂的病理生理过程。多种病理因素、多条信号通路参与其中。如血浆内皮素1通路、一氧化氮/eNOS通路和ERK1/2/P38MAPK通路等。其中一些已经成为临床治疗的靶点。研究表明,BMPR2信号通路与其他相关通路之间存在密切联系,共同参与PAH的发生发展。当BMPR2的表达不足时,多种BMP配体能促进血浆内皮素1的分泌,例如BMP7能增加血浆内皮素1的水平;而且进一步发现ALK-2在该过程中发挥着重要作用[104]。还有研究发现,BMPR2可以通过蛋白激酶A激活eNOS,发挥血管保护作用[105]。也有研究报道,作用于一氧化氮/eNOS通路的药物西地那非能够通过cGMP来恢复BMPR2突变引起的BMP信号不足,缓解PAH症状[28]。研究还发现,BMPR2/ Smad信号削弱会激活ERK1/2和P38MAPK通路,引起PASMC异常增殖[106-108]。
5 总结和展望
自2000年人类克隆出PAH突变基因BMPR2以来,PAH遗传学研究史开启了新篇章。然而,随着研究的深入,发现BMPR2突变的外显率很低(只有30%左右),BMPR2突变可能只是PAH形成的基础,还需要“二重打击”或者下游通路重要蛋白的进一步介导。在这个假说基础上,研究者围绕BMP信号通路的作用机制及调节机制开展了一系列研究,取得明显进展(图1)。发现转录因子Id蛋白很可能是BMPR2下游的关键效应蛋白;发现以miRNA、DNA甲基化和组蛋白修饰为代表的表观遗传学调节机制也参与了BMP介导的PAH发生发展过程;经典的炎症因子(如IL-6和IL-8等)和新的炎症因子(如HMGB1和IL-33等)与PAH形成密切相关,其机制涉及对BMP信号同路的调节。近年研究进一步提示,以BMPR2信号通路为靶点治疗PAH在动物水平获得了确证,展示出良好的开发潜力。随着研究的深入,将全面揭示BMPR2信号通路在PAH发病中的作用及机制,对于今后开展临床转化、实现临床治愈具有重要意义。
参考文献:
[1]Gaine SP,Rubin LJ.Primary pulmonary hyper⁃tension[J].Lancet,1998,352(9129):719-725.
[2]Runo JR,Loyd JE.Primary pulmonary hypertension[J].Lancet,2003,361(9368):1533-1544.
[3]Rich S,Dantzker DR,Ayres SM,Bergofsky EH,Brundage BH,Detre KM,et al.Primary pulmo⁃nary hypertension.A national prospective study[J].Ann Intern Med,1987,107(2):216-223.
[4]Lee SD,Shroyer KR,Markham NE,Cool CD,Voelkel NF,Tuder RM.Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension[J].J Clin Invest,1998,101(5):927-934.
[5]Miyazono K,Maeda S,Imamura T.BMP receptor signaling:transcriptional targets,regulation of signals,and signaling cross-talk[J].Cytokine Growth Factor Rev,2005,16(3):251-263.
[6]Kawabata M,Imamura T,Miyazono K.Signal transduction by bone morphogenetic proteins[J]. Cytokine Growth Factor Rev,1998,9(1):49-61.
[7]Upton PD,Long L,Trembath RC,Morrell NW. Functional characterization of bone morphoge⁃netic protein binding sites and Smad1/5 activation in human vascular cells[J].Mol Pharmacol,2008,73(2):539-552.
[8] Shi Y,Massagué J.Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell,2003,113(6):685-700.
[9]Morisaki H,Nakanishi N,Kyotani S,Takashima A,Tomoike H,Morisaki T.BMPR2 mutations found in Japanese patients with familial and sporadic primary pulmonary hypertension[J].Hum Mutat,2004,23(6):632.
[10]ThomsonJR,MachadoRD,PauciuloMW,Morgan NV,Humbert M,Elliott GC,et al. Sporadic primarypulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II,a receptor member of the TGF-beta family[J].J Med Genet,2000,37(10):741-745.
[11] CoganJD, PauciuloMW, BatchmanAP,Prince MA,Robbins IM,Hedges LK,et al.High frequency of BMPR2 exonic deletions/duplica⁃tions in familial pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2006,174(5):590-598.
[12] Aldred MA, Vijayakrishnan J, JamesV, Soubrier F,Gomez-Sanchez MA,Martensson G,et al.BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension[J]. Hum Mutat,2006,27(2):212-213.
[13]Gilbane AJ, Derrett-Smith E, Trinder SL,Good RB,Pearce A,Denton CP,et al.Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-β-dependent mouse model of pulmonary hypertension and in systemic sclerosis[J].Am J Respir Crit Care Med,2015,191(6):665-677.
[14]Long L, Yang X,SouthwoodM, Lu J,Marciniak SJ,Dunmore BJ,et al.Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lyso⁃somal bone morphogenetic protein type II receptor degradation[J].Circ Res,2013,112(8):1159-1170.
[15]Dunmore BJ,Drake KM,Upton PD,Toshner MR,Aldred MA,Morrell NW.The lysosomal inhibitor,chloroquine,increases cell surface BMPR-Ⅱlevels and restores BMP9 signalling in endothelial cells harbouring BMPR-Ⅱ mutations[J].Hum Mol Genet,2013,22(18):3667-3679.
[16]Long L,Ormiston ML,Yang X,Southwood M,Gräf S,Machado RD,et al.Selective enhance⁃ment of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension[J].Nat Med,2015,21(7):777-785.
[17]Crunkhorn S.Hypertension:BMP9 reverses PAH[J].Nat Rev Drug Discov,2015,14(8):528.
[18]Larkin EK,Newman JH,Austin ED,Hemnes AR,Wheeler L,Robbins IM,et al.Longitudinal analysis casts doubt on the presence of genetic anticipa⁃tion in heritable pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2012,186(9):892-896.
[19]PatelHH,ZhangS,MurrayF,SudaRY,Head BP,Yokoyama U,et al.Increased smooth muscle cell expression of caveolin-1 and caveo⁃lae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension[J].FASEB J,2007,21(11):2970-2979.
[20]Li XH.The role and related molecular mecha⁃nisms of BMP signaling about vascular remodeling in pulmmonary arterial hypertension(骨形成蛋白信号通路在肺动脉高压血管重构中的作用及机制研究)[D].Changsha:Centrol South University(中南大学),2011.
[21]Norton JD.ID helix-loop-helix proteins in cell growth,differentiation and tumorigenesis[J].J Cell Sci,2000,113(Pt 22):3897-3905.
[22]Sikder HA,Devlin MK,Dunlap S,Ryu B,Alani RM.Id proteins in cell growth and tumori⁃genesis[J].Cancer Cell,2003,3(6):525-530.
[23]Benezra R, Rafii S,Lyden D.The Id proteins and angiogenesis[J].Oncogene,2001,20(58):8334-8341.
[24]Lasorella A,Benezra R,Iavarone A.The ID pro⁃teins:master regulators of cancer stem cells and tumour aggressiveness[J].Nat Rev Cancer,2014,14(2):77-91.
[25]Yang J,Li X,Li Y,Southwood M,Ye L,Long L,et al.Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells[J].Am J Physiol Lung Cell Mol Physiol,2013,305(4):L312-L321.
[26]Yang J,Li X,Morrell NW.Id proteins in the vas⁃culature:from molecular biology to cardiopulmo⁃nary medicine[J].Cardiovasc Res,2014,104(3):388-398.
[27]Yang J,Li X,Al-Lamki RS,Southwood M,Zhao J,Lever AM,et al.Smad-dependent and smadin dependent induction of id1 by prostacyclin analogues inhibits proliferation ofpulmonary artery smooth muscle cells in vitro and in vivo[J]. Circ Res,2010,107(2):252-262.
[28]Yang J,Li X,Al-Lamki RS,Wu C,Weiss A,Berk J,et al.Sildenafil potentiates bone morpho⁃genetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmo⁃nary hypertension[J].Arterioscler Thromb Vasc Biol,2013,33(1):34-42.
[29]Li XW,Du J,Hu GY,Hu CP,Li D,Li YJ,et al. Fluorofenidone attenuates vascular remodeling in hypoxia-induced pulmonary hypertension of rats[J].Can J Physiol Pharmacol,2014,92(1):58-69.
[30]Chida A,Shintani M,Nakayama T,Furutani Y,Hayama E,Inai K,et al.Missense mutations of the BMPR1B(ALK6)gene in childhood idiopathic pulmonary arterialhypertension[J].Circ J,2012,76(6):1501-1508.
[31]Li W,Salmon RM,Jiang H,Morrell NW.Regula⁃tion of the ALK1 ligands,BMP9 and BMP10[J]. Biochem Soc Trans,2016,44(4):1135-1141.
[32]Piao C,Zhu Y,Zhang C,Xi X,Liu X,Zheng S,et al.Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture[J].Clin Sci(Lond),2016,130(17):1559-1569.
[33] Pousada G,Baloira A,Fontán D,Núñez M,Valverde D.Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension[J].BMC Genet,2016,17(1):72.
[34] Shintani M,Yagi H,Nakayama T,Saji T,MatsuokaR.A new nonsensemutationof SMAD8 associated with pulmonary arterial hyper⁃tension[J].J Med Genet,2009,46(5):331-337.
[35] Eyries M,Montani D,Girerd B,Perret C,Leroy A,LonjouC,etal.EIF2AK4mutationscause pulmonary veno-occlusive disease,a recessive form of pulmonary hypertension[J].Nat Genet,2014,46(1):65-69.
[36]Wang G,Knight L,Ji R,Lawrence P,Kanaan U,Li L,et al.Early onset severe pulmonary arterial hypertension with′two-hit′digenic mutations in both BMPR2 and KCNA5 genes[J].Int J Cardiol,2014,177(3):e167-e169.
[37] Germain M,Eyries M,Montani D,Poirier O,Girerd B,Dorfmüller P,et al.Genome-wide associ⁃ation analysis identifies a susceptibility locus for pulmonary arterial hypertension[J].Nat Genet,2013,45(5):518-521.
[38]Deng Z,Morse JH,Slager SL,Cuervo N,Moore KJ,Venetos G,et al.Familial primary pulmonary hypertension(gene PPH1)is caused by mutations in the bone morphogenetic protein receptor-II gene[J].Am J Hum Genet,2000,67(3):737-744.
[39]Lane KB,Machado RD,Pauciulo MW,Thomson JR,Phillips JA 3rd,Lovd JE,et al.Heterozygous germline mutations in BMPR2,encoding a TGF-beta receptor,cause familial primary pulmonary hyper⁃tension[J].Nat Genet,2000,26(1):81-84.
[40]MachadoRD,PauciuloMW,ThomsonJR,Lane KB,Morgan NV,Wheeler L,Loyd JE,et al. BMPR2 haploinsufficiency as the inherited molec⁃ular mechanism for primary pulmonary hyperten⁃sion[J].Am J Hum Genet,2001,68(1):92-102.
[41]Saco TV,Parthasarathy PT,Cho Y,Lockey RF,Kolliputi N.Role of epigenetics in pulmonary hypertension[J].Am J Physiol Cell Physiol,2014,306(12):C1101-C1105.
[42]Kabata H,Satoh T,Kataoka M,Tamura Y,Ono T,Yamamoto M,et al.Bone morphogenetic protein receptor type 2 mutations,clinical pheno⁃types and outcomes of Japanese patients withsporadic or familial pulmonary hypertension[J]. Respirology,2013,18(7):1076-1082.
[43]Liu D,Liu QQ,Eyries M,Wu WH,Yuan P,Zhang R,et al.Molecular genetics and clinical features of Chinese idiopathic and heritable pulmo⁃nary arterial hypertension patients[J].Eur Respir J,2012,39(3):597-603.
[44]Grünig E,Weissmann S,Ehlken N,Fijalkowska A,Fischer C,Fourme T,et al.Stress Doppler echo⁃cardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension:results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia[J].Circulation,2009,119(13):1747-1757.
[45]Koumakis E,Wipff J,Dieudé P,Ruiz B,Bouaziz M,Revillod L,et al.TGFβ receptor gene variants in systemic sclerosis-related pulmonary arterial hyper⁃tension:results from a multicentre EUSTAR study of European Caucasian patients[J].Ann Rheum Dis,2012,71(11):1900-1903.
[46]Mair KM,Yang XD,Long L,White K,Wallace E,Ewart MA,et al.Sex affects bone morphogenetic protein typeⅡ receptor signaling in pulmonary artery smooth muscle cells[J].Am J Respir Crit Care Med,2015,191(6):693-703.
[47]Liu D,Wu WH,Mao YM,Yuan P,Zhang R,Ju FL,et al.BMPR2 mutations influence phenotype more obviously in male patients with pulmonary arterial hypertension[J].Circ Cardiovasc Genet,2012,5(5):511-518.
[48]Girerd B,Montani D,Eyries M,Yaici A,Sztrymf B,Coulet F,et al.Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension[J].Respir Res,2010,11(1):73-76.
[49]Austin ED,Ma L,LeDuc C,Berman Rosenzweig E,Borczuk A,Phillips JA 3rd,et al.Whole exome sequencing to identify a novel gene(cave⁃olin-1)associated with human pulmonary arterial hypertension[J].Circ Cardiovasc Genet,2012,5(3):336-343.
[50]David L,Feige JJ,Bailly S.Emerging role of bone morphogenetic proteins in angiogenesis[J]. Cytokine Growth Factor Rev,2009,20(3):203-212.
[51]Upton PD,Davies RJ,Trembath RC,Morrell NW. Bone morphogenetic protein(BMP)and activin typeⅡreceptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells[J].J Biol Chem, 2009,284(23):15794-15804.
[52]David L,Mallet C,Mazerbourg S,Feige JJ,Bailly S.Identification of BMP9 and BMP10 as functional activators of the orphan activin recep⁃tor-like kinase 1(ALK1)in endothelial cells[J]. Blood,2007,109(5):1953-1961.
[53]van Meeteren LA,Thorikay M,Bergqvist S,Pardali E,Stampino CG,Hu-Lowe D,et al.Antihuman activin receptor-like kinase 1(ALK1)anti⁃body attenuates bone morphogenetic protein 9(BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting[J].J Biol Chem,2012,287(22):18551-18561.
[54]de Jesus Perez VA,Yuan K,Lyuksyutova MA,Dewey F,Orcholski ME,Shuffle EM,et al. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hyper⁃tension[J].Am J Respir Crit Care Med,2014,189(10):1260-1272.
[55]Nasim MT,Ogo T,Ahmed M,Randall R,Chowdhury HM,Snape KM,et al.Molecular genetic characterization of SMAD signaling mole⁃cules in pulmonary arterial hypertension[J].Hum Mutat,2011,32(12):1385-1389.
[56]Liu D,Morrell NW.Genetics and the molecular pathogenesis of pulmonary arterial hypertension[J].Curr Hypertens Rep,2013,15(6):632-637.
[57]Ye FZ.The study on the relation between status of 5′-CpG island methylation of BMPR-Ⅱ gene and its expression(BMPR-Ⅱ基因5’-侧翼区CpG岛甲基化状态与基因表达关系的研究)[D]. Guangzhou:Jinan University(暨南大学),2006.
[58]Bienertova-Vasku J,Novak J,Vasku A.MicroR⁃NAs in pulmonary arterial hypertension:patho⁃genesis,diagnosis and treatment[J].J Am Soc Hypertens,2015,9(3):221-234.
[59]Gupta S,Li L.Modulation of miRNAs in Pulmo⁃nary Hypertension[J].Int J Hypertens,2015,2015(1):169-173.
[60]Wu D,Talbot CC Jr,Liu Q,Jing ZC,Damico RL,Tuder R,et al.Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension[J].J Mol Med(Berl),2016,94(8):875-885.
[61]Boucherat O,Bonnet S.MicroRNA signature of end-stage idiopathic pulmonary arterial hypertension:clinical correlations and regulation of WNT signaling[J].J Mol Med(Berl),2016,94(8):849-851.
[62]Elia L,Condorelli G.MicroRNAs and pulmonaryhypertension:a tight link[J].Cardiovasc Res,2016,111(3):163-164.
[63]Zeng Y,Liu H,Kang K,Wang Z,Hui G,Zhang X,et al.Hypoxia inducible factor-1 mediates expres⁃sion of miR-322:potential role in proliferation and migration of pulmonary arterial smooth mus⁃cle cells[J].Sci Rep,2015,2015(5):120-125.
[64]Li S,Ran Y,Zhang D,Chen J,Li S,Zhu D. MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1[J].Biochem J,2013,452(2):281-291.
[65]Li SS,Ran YJ,Zhang DD,Li SZ,Zhu D. MicroRNA-190 regulates hypoxic pulmonary vaso⁃constriction by targeting a voltage-gated K+channel in arterial smooth muscle cells[J].J Cell Biochem,2014,115(6):1196-1205.
[66]Mackie AR,Byron KL.Cardiovascular KCNQ(Kv7)potassium channels:physiological regulators and new targets for therapeutic intervention[J]. Mol Pharmacol,2008,74(5):1171-1179.
[67] Andersen CU, Hilberg O, Mellemkjær S,Nielsen-Kudsk JE,Simonsen U.Apelin and pul⁃monary hypertension[J].Pulm Circ,2011,1(3):334-346.
[68]Kim J,Kang Y,Kojima Y,Lighthouse JK,Hu X,Aldred MA,et al.An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension[J].Nat Med,2013,19(1):74-82.
[69]Alastalo TP,Li M,Perez Vde J,Pham D,SawadaH,WangJK,etal.Disruptionof PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmo⁃nary arterial EC survival[J].J Clin Invest,2011,121(9):3735-3746.
[70]Kang K,Peng X,Zhang X,Wang Y,Zhang L,Gao L, et al.MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells[J].J Biol Chem,2013,288(35):25414-25427.
[71]Wang D,Zhang H,Li M,Frid MG,Flockton AR,McKeon BA,et al.MicroRNA-124 controls the proliferative,migratory,and inflammatory pheno⁃type of pulmonary vascular fibroblasts[J].Circ Res,2014,114(1):67-78.
[72] Parikh VN,Jin RC,Rabello S,Gulbahce N,White K,Hale A,et al.MicroRNA-21 integrates pathogenic signaling to control pulmonary hyper⁃tension:results of a network bioinformatics approach[J].Circulation,2012,125(12):1520-1532.
[73]Yang S,Banerjee S,Freitas Ad,Cui H,Xie N,Abraham E, et al.miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling[J].Am J Physiol Lung Cell Mol Physiol,2012,302(6):L521-L529.
[74]Caruso P,Dempsie Y,Stevens HC,McDonald RA,Long L,Lu R,et al.A role for miR-145 in pulmo⁃nary arterial hypertension:evidence from mouse models and patient samples[J].Circ Res,2012,111(3):290-300.
[75]Steiner MK,Syrkina OL,Kolliputi N,Mark EJ,Hales CA,Waxman AB.Interleukin-6 overex⁃pression induces pulmonary hypertension[J]. Circ Res.2009,104(2):236-244,228.
[76]Brock M,Trenkmann M,Gay RE,Michel BA,Gay S,Fischler M,et al.Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway[J].Circ Res,2009,104(10):1184-1191.
[77]Pullamsetti SS,Doebele C,Fischer A,Savai R,Kojonazarov B,Dahal BK,et al.Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension[J].Am J Respir Crit Care Med,2012,185(4):409-419.
[78]Bertero T,Lu Y,Annis S,Hale A,Bhat B,Saggar R, et al.Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension[J].J Clin Invest,2014,124(8):3514-3528.
[79]Bertero T,Cottrill K,Krauszman A,Lu Y,Annis S,Hale A,et al.The microRNA-130/301 family con⁃trols vasoconstriction in pulmonary hypertension[J].J Biol Chem,2015,290(4):2069-2085.
[80]Caruso P,MacLean MR,Khanin R,McClure J,Soon E,Southgate M,et al.Dynamic changes in lung microRNA profiles during the develop⁃ment of pulmonary hypertension due to chronic hypoxia and monocrotaline[J].Arterioscler Thromb Vasc Biol,2010,30(4):716-723.
[81]Kang H,Louie J,Weisman A,Sheu-Gruttadauria J,Davis-Dusenbery BN,Lagna G,et al.Inhibition of microRNA-302(miR-302)by bone morphogenetic protein 4(BMP4)facilitates the BMP signal⁃ing pathway[J].J Biol Chem,2012,287(46):38656-38664.
[82] Sarkar J,Gou D,Turaka P,Viktorova E,Ramchandran R,Raj JU.MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration[J].Am J Physiol Lung Cell Mol Physiol,2010,299(6):L861-L871.
[83]Rothman AM, Arnold ND, Pickworth JA,Iremonger J,Ciuclan L,Allen RM,et al.MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension[J].J Clin Invest,2016,126(7):2495-2508.
[84]Soon E,Holmes AM,Treacy CM,Doughty NJ,Southgate L,Machado RD,et al.Elevated levels of inflammatory cytokines predict survival in idio⁃pathic and familial pulmonary arterial hyperten⁃sion[J].Circulation,2010,122(9):920-927.
[85] Bhargava A,Kumar A,Yuan N,Gewitz MH,Mathew R.Monocrotaline induces interleukin-6 mRNA expression in rat lungs[J].Heart Dis,1999,1(3):126-132.
[86]Tuder RM,Voelkel NF.Pulmonary hypertension and inflammation[J].J Lab Clin Med,1998,132(1):16-24.
[87]Humbert M,Monti G,Brenot F,Sitbon O,Portier A,Grangeot-Keros L,et al.Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hyperten⁃sion[J].Am J Respir Crit Care Med,1995,151(5):1628-1631.
[88]Parpaleix A,Amsellem V,Houssaini A,Abid S,Breau M,Marcos E,et al.Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension[J]. Eur Respir J,2016,48(2):470-483.
[89]Meloche J,Renard S,Provencher S,Bonnet S. Anti-inflammatory and immunosuppressive agents in PAH[J].Handb Exp Pharmacol,2013,2013(218):437-476.
[90]Soon E,Crosby A,Southwood M,Yang P,Tajsic T,Toshner M,et al.Bone morphogenetic protein receptor typeⅡ deficiency and increased inflammatory cytokine production.A gateway to pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2015,192(7):859-872.
[91]Price LC,Montani D,Tcherakian C,Dorfmüller P,Souza R,Gambaryan N,et al.Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats[J].Eur Respir J,2011,37(4):813-822.
[92]Wang D,Prakash J,Nguyen P,Davis-Dusenbery BN,Hill NS,Layne MD,et al.Bone morphoge⁃netic protein signaling in vascular disease:antiinflammatory action through myocardin-related transcription factor A[J].J Biol Chem,2012,287(33):28067-28077.
[93]Davies RJ,Holmes AM,Deighton J,Long L,Yang X,Barker L,et al.BMP typeⅡ receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells:role of proinflammatory cytokines[J].Am J Physiol Lung Cell Mol Physiol,2012,302(6):L604-L615.
[94]Burton VJ,Ciuclan LI,Holmes AM,Rodman DM,Walker C,Budd DC.Bone morphogenetic protein receptorⅡregulates pulmonary artery endothelial cell barrier function[J].Blood,2011,117(1):333-341.
[95]Burton VJ,Holmes AM,Ciuclan LI,Robinson A,Roger JS,Jarai G,et al.Attenuation of leuko⁃cyte recruitment via CXCR1/2 inhibition stops the progression of PAH in mice with genetic ablation of endothelial BMPR-II[J].Blood,2011,118(17):4750-4758.
[96]Nabata T,Morimoto S,Koh E,Shiraishi T,Ogihara T.Interleukin-6 stimulates c-myc expression and proliferation of cultured vascular smooth muscle cells[J].Biochem Int,1990,20(3):445-453.
[97]Yue TL,Mckenna PJ,Gu JL,Feuerstein GZ. Interleukin-8 is chemotactic for vascular smooth muscle cells[J].Eur J Pharmacol,1993,240(1):81-84.
[98]Yue TL,Wang X,Sung CP,Olson B,McKenna PJ,Gu JL,et al.Interleukin-8.A mitogen and chemoattractant for vascular smooth muscle cells[J].Circ Res,1994,75(1):1-7.
[99]Hagen M,Fagan K,Steudel W,Carr M,Lane K,Rodman DM,et al.Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle[J].Am J Physiol Lung Cell Mol Physiol,2007,292(6):L1473-L1479.
[100]Sadamura-Takenaka Y,Ito T,Noma S,Oyama Y,Yamada S,Kawahara K,et al.HMGB1 promotes the development of pulmonary arterial hyperten⁃sion in rats[J].PLoS One,2014,9(7):e102482.
[101]Bauer EM,Shapiro R,Billiar TR,Bauer PM. High mobility group box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4-and interferon response factor 3-depen-dent mechanism(s)[J].J Biol Chem,2013,288(2):1365-1373.
[102]Yang PS,Kim DH,Lee YJ,Lee SE,Kang WJ,Chang HJ,et al.Glycyrrhizin,inhibitor of high mobility group box-1,attenuates monocrotalineinduced pulmonaryhypertension andvascular remodeling in rats[J].Respir Res,2014,15(1):148-153.
[103]Shao D,Perros F,Caramori G,Meng C,Dormuller P,Chou PC,et al.Nuclear IL-33 regu⁃lates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hyper⁃tension[J].Biochem Biophys Res Commun,2014,451(1):8-14.
[104]Star GP,Giovinazzo M,Langleben D.ALK2 and BMPR2 knockdown and endothelin-1 production by pulmonary microvascular endothelial cells[J]. Microvasc Res,2013,2013(85):46-53.
[105]Gangopahyay A,Oran M,Bauer EM,Wertz JW, Comhair SA,Erzurum SC,et al.Bone morpho⁃genetic protein receptorⅡis a novel mediator of endothelial nitric-oxide synthase activation[J].J Biol Chem,2011,286(38):33134-33140.
[106]Dewachter L,Adnot S,Guignabert C,Tu L,Marcos E,Fadel E,et al.Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension[J].Eur Respir J,2009,34(5):1100-1110.
[107]Yang X,Long L,Southwood M,Rudarakanchana N,Upton PD,Jeffery TK,et al.Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hyper⁃tension[J].Circ Res,2005,96(10):1053-1063.
[108] Rudarakanchana N,Flanagan JA,Chen H,Upton PD,Machado R,Patel D,et al.Functional analysis of bone morphogenetic protein typeⅡreceptor mutations underlying primary pulmonary hypertension[J].Hum Mol Genet,2002,11(13):1517-1525.
Bone morphogenetic protein receptor II signaling pathway and pulmonary arterial hypertension:updates and expectations
WANG Jin,XIANG Li-li,LI Xiao-hui
(Department of Pharmacology,Xiangya School of Pharmaceutical Science,Central South University,Changsha 410078,China)
The identification of the relationships between mutations of the bone morphogenetic protein type II receptor(BMPR2)and pulmonary arterial hypertension(PAH)has been considered to be one of the most significant discoveries in this area in the 21stcentury.And BMPR2 mutation is responsible for the majority of hereditary PAH as well as some of idiopathic PAH.Furthermore,clinical and animal expreimental research over the past few years has revealed that BMPR2 signaling pathway plays a critical role in the initiation and progress of PAH,by participateing in the pathogenesis of PAH.In addition,the potential that BMPR2 signaling pathway is used as a therapeutic target is being evaluated.This review summarizes our current understanding of the role of BMPR2 mutations in PAH from the perspectives of genetics, epigenetics,inflammation as well as interactions with other significant pathways.
pulmonary arterial hypertension;bone morphogenetic protein;genetics;epigenetics; inflammation
LI Xiao-hui,E-mail:xiaohuili@csu.edu.cn,Tel:(0731)82355077
R962
A
1000-3002-(2017)02-0119-12
10.3867/j.issn.1000-3002.2017.02.001
Foundation item:The project supported by National Natural Science Foundation of China(81200035);and Central South University Innovation-driven Project(2016CX034)
2016-11-11接受日期:2017-02-16)
(本文编辑:齐春会)
国家自然科学基金(81200035);中南大学创新驱动计划(2016CX034)。
李晓晖,E-mail:xiaohuili@csu.edu.cn,Tel:(0731)82355077