雷帕霉素靶蛋白信号通路介导转化生长因子-β2诱导的后发性白内障的分子机制研究
2017-01-16葛茸茸
葛茸茸,沈 炜
·基础医学· ·论著·
雷帕霉素靶蛋白信号通路介导转化生长因子-β2诱导的后发性白内障的分子机制研究
葛茸茸,沈 炜
目的 探讨雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路与转化生长因子(transforming growth factor,TGF)-β2诱导的晶状体上皮细胞间质化的相关机制。方法 显微镜观察TGF-β2诱导的晶状体上皮细胞的表型变化,Western blot进一步验证TGF-β2诱导的HLEB-3上皮间质转化模型。MTT检测TGF-β2诱导上皮间质化后以及雷帕霉素对细胞增殖的影响。Western blot在分子水平检测上皮间质化和mTOR信号通路之间的机制关联。结果 加入TGF-β2诱导处理24 h后,用显微镜观察HLEB-3的细胞形态由椭圆形变为星形或纺锤形,细胞连接减少。Western blot检测发现TGF-β2诱导后的HLEB-3中上皮细胞标志蛋白E-cadherin表达水平明显降低,而间质细胞标记蛋白α-SMA的表达水平显著降低,差异有统计学意义(P<0.05)。MTT检测发现雷帕霉素预处理可以抑制TGF-β2对上皮细胞增殖的促进作用。Western blot显示当用雷帕霉素抑制mTOR信号通路的激活后,可以逆转TGF-β2对α-SMA的表达的上调作用,促进上皮细胞标志蛋白E-cadherin的表达。结论 mTOR信号通路介导TGF-β2诱导的上皮细胞间质化作用,促进后发性白内障的发生。
转化生长因子-β2;雷帕霉素靶蛋白信号通路;后发性白内障
后发性白内障(posterior capsular opacification,PCO)是白内障术后常见的主要并发症之一,是目前白内障术后视力下降的主要原因,其分子病理基础为手术残留的晶状体上皮细胞的异常迁移、增殖及上皮间质转化[1]。雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路是调控细胞生长与增殖、分化的关键通路,不仅可参与调节细胞周期的进程,调控细胞生长增殖[2],而且促进细胞的黏附和迁移,调节上皮间质转化[3]。虽然晶状体上皮细胞发生上皮间质转化是后发性白内障的病理基础,然而,mTOR信号通路在晶状体上皮细胞上皮间质转化过程中的作用及作用机制目前知之甚少。本研究拟通过转化生长因子(transforming growth factor,TGF)-β2诱导晶状体上皮细胞构建上皮间质转化模型,检测mTOR信号通路在上皮间质转化过程中的表达,并利用mTOR 抑制剂雷帕霉素诱导晶状体上皮细胞,探讨其对晶状体上皮细胞间质转化的影响,明确mTOR信号通路在晶状体上皮细胞上皮间质转化过程中的作用及机制,从中寻找后发性白内障防治的新靶点。
1 材料与方法
1.1 材料和试剂 TGF-β2购买自PeproTech公司,人晶状体上皮细胞HLEB-3购买自上海生命科学院细胞所。DMEM培养液和胎牛血清(AusGeneX)购买自上海银海圣生物有限公司,青霉素、链霉素、胰酶、雷帕霉素购买自上海聚仕隆有限公司,E-cadherin抗体,α-SMA抗体、mTOR抗体、p-mTOR抗体、cyclinD1抗体、BAX抗体购买自上海煊翎有限公司。MTT试剂盒和Annexinv-FITC/PI双染试剂盒购买自南京建成生物有限公司。
1.2 方法 细胞培养与处理人晶状体上皮细胞HLEB-3进行常规传代培养,DMEM培养液和10%胎牛血清在37 ℃ 5%二氧化碳的培养箱中培养。当细胞约80%融合时,换用无血清DMEM培养液,加入终浓度为1 ng/ml TGF-β2诱导处理24 h,模拟人晶状体上皮细胞HLEB-3上皮间质转化模型。为检测mTOR信号通路对上皮间质化的影响,当人晶状体上皮细胞HLEB-3约80%融合时,换用无血清DMEM培养液,先加入终浓度为100 μmol/L的雷帕霉素预处理2 h,然后用终浓度为1 μg/L TGF-β2诱导处理24 h,检测mTOR信号通路抑制后对TGF-β2诱导的上皮间质转化的影响。
1.3 观察及检测指标 (1)显微镜观察细胞形态。在培养室的倒置显微镜下观察人晶状体上皮细胞HLEB-3的形态以及加入TGF-β2和雷帕霉素的形态变化,拍照并对比。(2)MTT检测细胞增殖。人晶状体上皮细胞HLEB-3进行常规传代培养,收集对数生长期细胞制成单细胞悬液,接种于96孔板,细胞约80%融合时,换用无血清DMEM培养液,先加入终浓度为100 μmol/L的雷帕霉素预处理2 h,然后用终浓度为1 μg/L TGF-β2诱导处理24 h,加入MTT溶液,孵育4 h后酶标仪检测570 nm处的光密度(OD值)。(3)Western blot检测上皮间质转化相关分子的表达以及mTOR信号通路的激活情况。先加入终浓度为100 μmol/L的雷帕霉素预处理2 h,然后用终浓度为1 μg/L TGF-β2诱导处理24 h, Western blot检测HLEB-3细胞中检测mTOR信号通路的激活水平以及上皮细胞标志蛋白E-cadherin以及间质细胞标志蛋白α-SMA的表达水平,探究mTOR信号通路的激活与上皮间质转化的关系。
1.4 统计学处理 采用 SPSS 14.55统计软件处理。实验数据以均数±标准差(x±s)表示,各组间样本均数比较采用One-way ANOVA分析,两样本间成对比较用t检验。P<0.05为差异具有统计学意义。
2 结果
2.1 显微镜观察TGF-β2诱导的晶状体上皮细胞上皮间质转化模型 显微镜观察发现TGF-β2处理后细胞形态明显变得细长,形态变为星形或纺锤形,细胞之间连接减少,具有成纤维细胞的雏形。这表明TGF-β2可能参与诱导的晶状体上皮细胞上皮间质转化。见图1。
2.2 Western blot验证TGF-β2诱导的晶状体上皮细胞HLEB-3上皮间质转化模型 利用Western blot检测结果发现,与对照组比较,TGF-β2诱导的上皮细胞标志蛋白E-cadherin表达水平明显降低,而间质细胞标记蛋白α-SMA的表达水平显著升高,差异均有统计学意义(P<0.05)。见图2。
2.3 MTT检测TGF-β2和雷帕霉素对晶状体上皮细胞HLEB-3增殖的影响 TGF-β2可以成功诱导HLEB-3细胞间质化,那么对细胞的增殖具有怎么样的影响,当用雷帕霉素预处理抑制mTOR信号通路后增殖的变化如何,尚不明确。因此,笔者利用MTT方法检测了细胞间质化后细胞增殖的变化,发现TGF-β2诱导细胞间质化后细胞数量明显增加。见图3。
注:A表示对照组(加入PBS),B表示TGF-β2处理组。TGF为转化生长因子图1 显微镜观察TGF-β2诱导的人晶状体上皮细胞HLEB-3形态变化(×200)
注:与对照组比较aP<0.05。TGF为转化生长因子。A为2组蛋白电泳图,B为2组蛋白的表达水平图2 TGF-β2对人晶状体上皮细胞HLEB-3中上皮细胞标志蛋白和间质细胞标志蛋白表达的影响
注:与TGF-β2处理组比较aP<0.05。TGF为转化生长因子图3 TGF-β2和雷帕霉素对晶状体上皮细胞HLEB-3增殖的影响
2.5 TGF-β2和雷帕霉素对上皮间质化和mTOR信号通路的影响 为了探究mTOR信号通路和TGF-β2诱导的HLEB-3细胞间质化的关系,利用Western blot检测了TGF-β2和雷帕霉素处理后,上皮间质化标志蛋白、间质化标志性蛋白和mTOR信号通路的激活情况,发现TGF-β2可以显著激活mTOR信号通路,促进HLEB-3细胞中间质化标志性蛋白α-SMA的表达,促进上皮细胞间质化,当用雷帕霉素抑制mTOR信号通路的激活后,可以逆转TGF-β2对α-SMA的表达的上调作用,逆转TGF-β2对上皮细胞间质化的作用。见图4。
注:与TGF-β2处理组比较aP<0.05。TGF为转化生长因子。A为各组蛋白电泳图,B为各组蛋白的表达水平图4 TGF-β2和雷帕霉素对上皮间质化和mTOR信号通路的影响
3 讨论
白内障术后晶状体后囊膜混浊又名PCO,是现代白内障术后最常见的主要并发症之一[4],尽管手术技术和人工晶状体材料的进步已经在很大程度上降低了后发性白内障的发生率,但后发性白内障仍是术后视力下降的主要原因[5],目前认为手术残留的晶状体上皮细胞的异常迁移、增殖及上皮间质转化是后发性白内障的主要发病机制[6],积极预防后发性白内障的发生是保障白内障手术远期疗效的关键途径[7]。因此,应积极探究PCO发病的调控机制,为PCO的治疗寻找新的分子靶位点。
近年来,研究发现肝细胞生长因子,成纤维细胞生长因子[8]、转化生长因子、表皮生长因子[9]等均参与后发性白内障的发生,其中,TGF-β2参与调节晶体状上皮细胞的增殖、迁移、上皮间质转化等多种活动,是公认的诱发PCO发生的重要因子[10]。目前TGF-β诱导晶状体上皮细胞上皮间质转化细胞模型已成为众多学者认可的研究白内障形成的细胞模型[11]。
目前在PCO发生发展过程中研究比较明确的信号传导途径有TGF-β/Smad信号通路[12]、PI3K/AKT/mTOR信号通路[13]、Rho/ROCK信号通路[14]等。目前认为mTOR信号通路不仅在调节细胞周期进程和细胞生长增殖过程中发挥中心枢纽的作用[15],而促进细胞的黏附和迁移,并参与调节上皮间质转化[16]。研究证实,mTOR信号通路介导TGF-β诱导的小鼠乳腺上皮细胞上皮间质转化[17]。近期有研究[18]表明,在上皮细胞的上皮间质转化过程中,TGF-β通过激活PI3K/Akt信号通路进而激活mTOR信号通路,然而,mTOR途径在晶状体上皮细胞上皮间质转化过程中的作用目前研究甚少。
本课题拟通过TGF-β诱导的晶状体上皮细胞上皮间质转化模型,检测mTOR途径在此过程中的活化情况,并利用mTOR抑制剂诱导晶状体上皮细胞,探讨其对细胞形态、增殖、凋亡以及间质转化的影响,初步明确mTOR途径在晶状体上皮细胞上皮间质转化过程中的作用及机制,力求从中寻找PCO防治的新靶点。结果发现TGF-β能够活化mTOR信号通路,促进人晶状体上皮细胞的迁移能力以及上皮细胞向间质的转化,表明TGF-β能够通过mTOR信号通路调控PCO的发生发展。这提示了抑制mTOR信号通路的活化,可能会减弱TGF-β对人晶状体上皮细胞增殖及迁移能力的增强作用,mTOR信号通路可能为改善上皮间质转化的靶位点[19]。笔者利用mTOR 抑制剂雷帕霉素诱导晶状体上皮细胞,发现雷帕霉素可以显著抑制晶状体上皮细胞间质转化,进一步验证了mTOR信号通路介导TGF-β2诱导的上皮细胞间质化作用,促进PCO的发生这一结论,为PCO的治疗及药物研发提供了一定的分子理论依据。
[1] Wormstone IM, Wang L, Liu CS. Posterior capsule opacification[J]. Exp Eye Res, 2009, 88(2): 257-269. DOI:10.1016/j.exer.2008.10.016.
[2] Chen YC, Chien LH, Huang BM, et al. Aqueous extracts of toona sinensis leaves inhibit renal carcinoma cell growth and migration through JAK2/stat3, Akt, MEK/ERK, and mTOR/HIF-2α pathways[J]. Nutr Cancer, 2016, 68(4): 654-666. DOI:10.1080/01635581.2016.1158292.
[3] Gao H, Zhong F, Xie J, et al. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling[J]. Am J Cancer Res, 2015, 6(2):425-39.
[4] Chan E, Mahroo OA, Spalton DJ. Complications of cataract surgery[J]. Clin Exp Optom, 2010, 93(6): 379-389. DOI:10.1111/j.1444-0938.2010.00516.x.
[5] Kramer GD, Werner L, MacLean K, et al. Evaluation of stability and capsular bag opacification with a foldable intraocular lens coupled with a protective membrane in the rabbit model[J]. J Cataract Refract Surg, 2015, 41(8): 1738-1744. DOI:10.1016/j.jcrs.2015.03.017.
[6] Luft N, Kreutzer TC, Dirisamer M, et al. Evaluation of laser capsule polishing for prevention of posterior capsule opacification in a human ex vivo model[J]. J Cataract Refract Surg, 2015, 41(12): 2739-2745. DOI:10.1016/j.jcrs.2015.06.039.
[7] Nibourg LM, Gelens E, Kuijer R, et al. Prevention of posterior capsular opacification[J]. Exp Eye Res, 2015, 136: 100-115. DOI:10.1016/j.exer.2015.03.011.
[8] Dawes LJ, Duncan G, Wormstone IM. Age-related differences in signaling efficiency of human lens cells underpin differential wound healing response rates following cataract surgery[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 333-342. DOI:10.1167/iovs.12-10425.
[9] Wertheimer C, Siedlecki J, Kook D, et al. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model[J]. Albrecht Graefe Archiv klin Experim Ophthalmol, 2015, 253(3): 409-417. DOI:10.1007/s00417-014-2875-0.
[10] Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract[J]. Exp Eye Res, 2016, 142: 92-101. DOI:10.1016/j.exer.2015.02.004.
[11] Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research[J]. Exp Eye Res, 2016, 142: 2-12. DOI:10.1016/j.exer.2015.04.021.
[12] Li J, Tang X, Chen X. Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line[J]. Exp Eye Res, 2011, 92(3): 173-179. DOI:10.1016/j.exer.2011.01.009.
[13] Yao K, Ye PP, Tan J, et al. Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells[J]. Ophthalmic Res, 2008, 40(2): 69-76. DOI:10.1159/000113884.
[14] Cheng HL, Lin CW, Yang JS, et al. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways[J]. Oncotarget, 2016,(9): 9742-9758. DOI:10.18632/oncotarget.7138.
[15] Albert V, Hall MN. mTOR signaling in cellular and organismal energetics[J]. Curr Opin Cell Biol, 2015, 33: 55-66. DOI:10.1016/j.ceb.2014.12.001.
[16] Kwasnicki A, Jeevan D, Braun A, et al. Involvement of mTOR signaling pathways in regulating growth and dissemination of metastatic brain tumors via EMT[J]. Anticancer Res, 2015, 35(2): 689-696.
[17] Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway[J]. J Cell Biol, 2007, 178(3): 437-451. DOI:10.1083/jcb.200611146.
[18] Singha PK, Pandeswara S, Geng H, et al. TGF-βinduced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer[J]. Genes Cancer, 2014, 5(9-10): 320-336. DOI:10.18632/genesandcancer.30.
[19] Wertheimer C, Brandlhuber U, Kook D, et al. Erufosine, a phosphoinositide-3-kinase inhibitor, to mitigate posterior capsule opacification in the human capsular bag model[J]. J Cataract Refract Surg, 2015, 41(7): 1484-1489. DOI:10.1016/j.jcrs.2015.02.034.
(本文编辑:莫琳芳)
Study on the molecular mechanism of after-cataract induced by mTOR signal pathway and mediated by TGF-β2
Ge Rongrong, Shen Wei
(DepartmentofOphthalmology,ChanghaiHospital,SecondMilitaryMedicalUniversity,Shanghai200433,China)
Objective To investigate the mechanism of the association between mammalian target of rapamycin(mTOR) signal pathway and TGF-β2-induced lens epithelial mesenchymal transition.MethodsPhenotypic changes in lens epithelial cells induced by TGF-β2 were closely observed by microscopy. Western blotting was used to further verify the HLEB3 epithelial mesenchymal transition model induced by TGF-β2. MTT was applied to detect the effects of TGF-β2 after induction of epithelial mesenchymal and Rapamycin on cell proliferation. Western blotting was used to detect the mechanism of the relationship between epithelial mesenchymal transition and mTOR signal pathway at the molecular level.ResultsAfter TGF-β2 treatment for 24 hours, microscopic observation revealed that HLEB-3 cells were transformed from the oval shape into the star or fusiform shape, and cell connection was also reduced. Western blotting revealed that the expression levels of epithelial protein marker E-cadherin in HLEB-3, following induction of TGF-β2, was obviously decreased, while the expression levels of the stromal cell protein marker α-SMA were significantly decreased, and statistical significance could be noticed when comparisons were made between them(P<0.05). MTT test also indicated that Rapamycin pretreatment could inhibit the enhancing effect of TGF-β2 on epithelial cell proliferation. Western blotting showed that Rapamycin could reverse the up-regulation of α-SMA by TGF-β2 and promote the expression of epithelial protein marker E-cadherin, following the activation of mTOR signal pathway inhibited by Rapamycin.ConclusionEpithelial mesenchymal transition induced by mTOR signal pathway and mediated by TGF-β2 could promote the onset of after-cataract.
TGF -β2; mTOR signal pathway; Post capsular opacification
虹口区卫生和计划生育委员会医学科研课题(虹卫1603-27);上海市科学技术委员会科研计划项目(15ZR1413200)
200433 上海,第二军医大学附属长海医院眼科[葛茸茸(现工作单位解放军第四一一医院眼科)、沈炜]
沈炜,电子信箱:shenwzz@163.com
R776.1
A
10.3969/j.issn.1009-0754.2016.06.006
2016-10-11)