房颤射频消融术逆转冠状窦血miRNA异常表达的研究
2016-09-11徐桂玉赵楠楠杨水祥
徐桂玉 赵楠楠 杨水祥
房颤射频消融术逆转冠状窦血miRNA异常表达的研究
徐桂玉 赵楠楠 杨水祥
目的 探讨房颤射频消融手术(RFA)终止房颤后患者冠状窦血miRNA的变化,试图发现真正起调控作用的miRNA,以揭示房颤的机制及可能的干预靶点。方法 选择30例行房颤射频消融术患者(阵发性、持续性和永久性房颤各10例),健康体检者10例作为正常对照组。射频消融术前分别取冠状窦血和外周血,术后3个月取外周血,使用miRNA芯片进行全基因组miRNA表达谱微阵列分析,Real-time PCR对miRNA结果进行验证,并通过mirbase、miranda、targetscan数据库行靶基因分析,对重要miRNA进行双荧光素酶结合实验。结果 房颤射频消融术前患者冠状窦血与自身外周血比较,共有142种miRNA表达差异,其中6种显著上调、8种下调(P<0.05)。射频消融术后外周血较术前上调的6种miRNA中分别有3种表达上调和下调,其中miR-1266下调-204.17倍;较术前下调的8种miRNA中,有7种再下调,其中miR-3664-5p下调-44.66倍。荧光素酶结合实验证实SCN5A是miR-1266的直接靶基因,CACNA1C是miR-4279的直接靶基因。结论 房颤射频消融手术可逆转患者冠状窦血miRNA的调控异常,冠状窦血miRNA的表达差异可直接反映房颤时心肌miRNA的表达状况。MiR-1266有可能成为未来房颤干预的靶点。
心房颤动;射频消融;微小RNA;离子通道蛋白;组学研究
目前,对于心房颤动(房颤,AF)miRNA调控机制的研究仍未形成方向性或趋势性的研究成果,以及未确定可以作为早期预警诊断的标记物或干预靶点的miRNA[1-8]。本研究从临床实际出发,提出了“冠状窦血miRNA可能更能反映房颤发作时心肌miRNA的调控状况与代谢水平”的设想,并在前期研究中已进行了冠状窦血miRNA表达的观察,发现了一些可能有价值的miRNA[9]。为了进一步探索房颤射频消融手术对心肌(冠状窦血)miRNA调控的影响,在扩大样本量的基础上,本研究选择了30例房颤患者(阵发性、持续性和永久性房颤各10例),正常对照组10例,射频消融手术前和术后3个月(未复发患者)取外周血及术中取冠状窦血,在全基因组miRNA芯片扫描的基础上,观察房颤射频消融手术终止房颤后miRNA的变化,试图发现真正起调控作用的miRNA,以揭示房颤的分子机制及可能的miRNAs干预靶点,为未来房颤的研究奠定基础。
1 对象与方法
1.1 研究对象 本研究选取我院心内科2013年1月至2014年6月30例行房颤射频消融术患者(分为阵发性、持续性和永久性房颤组各10例),平均年龄(72.17±4.76)岁,女性 14例,男性 16例;正常对照组10例,平均年龄(69.40±5.86)岁。每位患者均有5份以上不同时间心电图(ECG)支持房颤诊断。排除标准:年龄>80岁,甲状腺功能亢进,糖尿病,血压控制不良[收缩压>140mm Hg和(或)舒张压>90 mm Hg(1 mm Hg=0.133 kPa)],左室功能减低(EF<40%),严重冠状动脉疾病,肝、肾功能障碍,急、慢性感染疾病,心肌结构性病变。患者入组后均接受血管紧张素转化酶抑制剂(ACEI)、血管紧张素受体抑制剂(ARB)、他汀类等药物规范控制血压、血脂等治疗。停用β受体阻滞剂(β-blocker)和其他抗心律失常药物。
本研究方案经由院伦理委员会审批通过。参与患者均签署知情同意书。
1.2 实验仪器材料 第七代miRCURYTMLNA microRNA 芯片(v18.0 Exqion)、miRCURY Array Power Labeling kit标记试剂盒(Cat#208032-A Exiqon)Wash buffer试剂盒(Exiqon)、TRIzol Reagent(Invitrogen life technologies)、miRNeasy mini试剂盒(Qiagen)、分光光度计(Sigma NanodropR ND-1000)、Axon Gene Pix 4000B微阵列芯片扫描仪。
1.3 试验方法
1.3.1 标本收集及储存 射频消融术前、术后3个月分别抽取外周血4 ml,术中射频消融前置入冠状窦电极时取冠状窦血4 ml,分别置于EDTA抗凝管中,2 h 之内分离血浆,1500 r/min,离心 15 min,吸上清液至冻存管中,-80℃保存。
1.3.2 RNA的提取及标记 按照说明书用TRIzol Reagent和miRNeasy mini试剂盒提取总RNA,分光光度计测定RNA浓度和纯度。分离RNA,采用miRCURYTM Array Power Labeling kit标记试剂盒进行miRNA标记。CIP和CIP buffer的混合物(1∶1),经孵育、离心后,依次加入标记缓冲液、荧光探针(Hy3TM)、DMSO和标记酶等,16℃下孵育1 h后终止,置于4℃保存。
1.3.3 芯片杂交 标记后,采用miRCURYTMLNA microRNA芯片对Hy3TM标记的样品进行杂交,操作按芯片说明书进行。样品混合物与杂交缓冲液混合,经变性、冰上孵育、杂交过夜后离心5 min,干燥;微阵列芯片扫描仪扫描玻片,GenePix pro V6.0数据分析。
1.3.4 实时定量PCR(real-time PCR) Real-time PCR检测标本中miRNA的表达情况。按照说明书Trizol LS Reagent提取样品中RNA。紫外吸收测定法进行RNA质量检测,使用Nano Drop ND-1000测定RNA浓度、纯度。使用样品的RNA进行cDNA合成。RT primers合成如下表(上海百力格生物)。
利用ViiA7 Real-time PCR System进行Realtime PCR反应。内参(has-miR-93)及所有指标均按以下程序进行:95℃,10 min;40个PCR循环(95℃,10 sec;60℃,60 sec收集荧光),建立PCR产物溶解曲线。各样品目的miRNA和内参分别进行Realtime PCR反应。数据采用2-△△CT法进行分析。
1.3.5 靶基因预测 预测miRNA靶基因主要通过mirbase、miranda、targetscan三个数据库进行。利用Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库对预测结果进行信号通路归类,而后根据Gene Ontology project数据库对靶基因参与的生化过程、细胞组分及分子功能进行分析。筛选所得靶基因至少存在于2个数据库中。
1.3.6 荧光素酶结合实验 分别将miR-1266质粒(pcDNA6.2-GW/miRNA-1266)和 miR-4279质粒与重组荧光素酶质粒共转染于HEK293细胞,以miR-1266 NC质粒(pcDNA6.2-GW/miRNA NC)和miR-4279 NC质粒和空白组为对照,分析各组转染后相对荧光素酶活性。
1.4 统计学方法 采用Volcano Plot法获得差异表达,以房颤组患者与正常对照组外周血比值>1.5倍认为是显著上调,比值<1.5倍认为显著下调,均采用t检验。P<0.05为差异具有统计学意义。
2 结果
2.1 房颤组冠状窦血与自身外周血miRNA术前表达差异 房颤组(包括所有阵发性、持续性和永久性房颤患者)冠状窦血与自身外周血比较,共有142种miRNAs表达差异(聚类图省略),其中6种miRNAs显著上调、8种显著下调(图 1,表 1、2)。
表1 房颤患者术前C/W上调>1.5倍的miRNA
表2 房颤患者术前C/W下调>1.5倍的miRNA
2.2 房颤组术后外周血与自身术前外周血及冠状窦血比较miRNA表达差异 房颤术后3个月,房颤组患者外周血与自身术前外周血miRNAs比较,上调>1.5倍,有明显统计学差异的503种,下调>1.5倍统计学差异显著的81种。其中,房颤术前冠状窦血显著上调的6种miRNA,术后外周血分别有3种表达上调和下调,其中miR-1266下调-204.1703。见表3。
术前冠状窦血显著下调的8种miRNA,术后外周血有7种明显下调,但miR-574-3p增加8.7242倍,见表4。
表3 术前上调的miRNA术后外周血表达差异
表4 术前下调的miRNA术后外周血表达差异
2.3 RT-PCR验证结果 Real-time PCR对冠状窦血表达差异的miRNAs结果进行验证。术前冠状窦血与自身外周血及正常对照组的芯片表达差异结果,经PCR的验证基本一致;术后3个月与术前结果与芯片结果大体一致,未见统计学差异;术前与正常对照组结果验证,PCR与芯片结果也相同。
2.4 冠状窦血差异表达miRNA的离子通道靶基因 通过mirbase、miranda、targetscan三个数据库预测的冠状窦血表达差异miRNA离子通道蛋白靶基因见表5。
2.5 双荧光素酶结合实验结果
2.5.1 MiR-1266与SCN5A基因结合 MiR-1266质粒(pcDNA6.2-GW/miRNA-1266)和miR-1266阴性对照质粒(pcDNA6.2-GW/miRNA NC)分别与SCN5A重组荧光素酶质粒(pmirGLO-SCN5A 3′UTR)共转染后发现,miR-1266组和阴性对照组相比,荧光素酶相对活性显著降低(P2=0.002);两组与空白对照组比较,差异均有统计学意义(P<0.01)。见图 2。
2.5.2 MiR-4279 与 CACNA1C、KCNH2、KCNE1、KCNJ5基因结合 与阴性对照组比较,miR-4279转染组CACNA1C的双荧光素酶活性明显下调(P<0.01);miR-4279与KCNH2转染组轻微下调(P>0.05);而KCNE1、KCNJ5转染组未见统计学差异(P>0.05)。各组与空白对照组比较差异有统计学意义(P<0.01)。见图 3。
表5 冠状窦血差异表达miRNA的离子通道蛋白靶基因
3 讨论
本研究在“冠状循环miRNA更能反映房颤发作时心肌miRNA的调控与代谢水平”设想的基础上,观察了手术前后冠状窦血miRNA的表达差异,并对差异表达较大的miR-1266等进行了荧光素酶结合实验,以证实其可能的调控作用。下面对可能起主要调控的miRNA分别予以讨论。
MiR-1266的靶基因SCN5A是调控钠离子流的主要通道蛋白[10],电压依赖性钠通道主要决定动作电位的有效不应期(AERP)[11]。新近发现,房颤时INa,peak电流密度降低伴Nav1.5表达降低[12]。多项研究揭示了Na通道参与心房颤动电重构[13-18]。本研究发现,miR-1266术前增加1.96倍,术后下降249.86倍。MiR-1266与SCN5A的结合位点保守,调控作用强,使术前SCN5A表达下降,钠电流密度降低,术后则明显逆转,这与动物实验的结果一致[13-15]。MiR-1266靶基因NALCN称为“Na漏”电流通道基因,可调节细胞起搏活性[19];靶基因KCNH2与长QT间期有关[20],其基因多态性与中国人房颤易感性相关[21],基因突变能引起短QT间期综合征和房颤[22]。在高血压房颤患者中,该基因与肾上腺素能受体1、2、3和CX40具有关联性[23]。本研究还通过双荧光素酶报告系统分析发现,miR-1266与SCN5A 3′UTR存在靶向结合,抑制荧光素酶的活性,因而SCN5A是miR-1266的直接靶基因。
本研究提示,miR-4279与L型钙通道α亚基CACNA1C的3′UTR有结合,从而抑制荧光素酶的表达,说明CACNA1C可能是miR-4279的直接靶基因,是miR-4279发挥作用的靶点。MiR-4279可能同时调控Ca2+通道基因CACNA1C,以及Ca2+激活K+通道蛋白基因3(SK3电流,通道基因KCNN3)。杨宝峰等[24]转动物实验已证实,靶基因CACNA1C参与房颤调控,钙离子通道功能障碍引起多系统障碍包括心律失常的出现[25-28]。分子生物学及循证医学研究发现,KCNN3可明显改变心房细胞动作电位时程,增加房颤的风险[29],KCNN3变异与孤立性房颤有关[30]。荟萃分析证实其为房颤易感位点[31]。
MiR-4666a-3p主要调控 CACNA1C、HCN4基因及钾离子通道KCNG3基因,后者与神经递质释放、神经兴奋性、心率、平滑肌收缩等调节有关[32-34]。HCN4是起搏电流(If)的主要离子通道蛋白[35]。起搏电流对心脏节律的形成和维持起着至关重要的作用,病理状态下,If通道的异常活动是心肌细胞异位节律增高的离子基础[36]。研究发现,快速起搏房颤犬,其肺静脉肌袖细胞上的If电流异常增大,并且在交感神经兴奋时,该电流增加更加明显,从而导致静脉肌袖细胞自律性增高,形成异位节律[37]。MiR-4666a-3p的增加可能是HCN4电流增大的调节适应性反应,其对CACNA1C的调控结果可能是导致L型Ca2+电流降低的原因之一。
MiR-1266、miR-4279均可调控 K+通道基因KCNH2、KCNE1、KCNJ5。KCNH2 是复极期快速延迟整流钾电流(Ikr)电流的α亚单位[38],KCNE1是复极期缓慢延迟整流钾电流(Iks)的亚单位[39],KCNJ5是乙酰胆碱介导的K+电流Kir3.4通道亚基[40]。大规模基因筛查发现,这些K+通道基因多态性与房颤的发生密切相关[41-43]。另外,miR-1266、miR-4279、miR-4666a-3p在房颤患者冠状窦血及自身外周血中均明显增高,说明其可能是来自心肌组织的特异性miRNA。上述代谢特征说明它们不仅可能参与调控房颤的发生发展,更有可能成为未来房颤治疗的潜在靶点。
MiR-3171在房颤组患者冠状窦血及外周血均显著持续下降,冠状窦血降低更明显,提示其可能主要由心脏外组织分泌,经过冠状循环与心肌结合参与房颤调控,使冠状窦水平进一步降低。其下降可能与靶基因SCN5A的下降,以及与靶基因KCNC4增加有关。KCNC4是乙酰胆碱介导的内向整流 K+电流(KAch)的通道蛋白[44],KAch 电流增加,APD缩短,房颤易感性增高,而术后逆转。MiR-3171在外周血明显下降,未来有可能成为房颤早期预警诊断的标志物。
MiR-892a、miR-3149在房颤患者外周血的表达均高于冠状窦血及正常对照组外周血。这说明其可能来源于心外组织,经冠状循环后结合于心肌。MiR-892a在冠状窦血的下降可能与靶基因KCNH2(Ikr电流通道蛋白)增加、复极期外向K+电流增多后的调控有关;miR-3149在冠状窦血下降,可能与靶基因KCNC4表达增加、乙酰胆碱介导的内向整流K+电流增多相关。另外,是否与靶基因HCN1(起搏电流亚基1)在正常心房肌细胞表达增加,导致起搏电流增加、异位节律电的兴奋性增高有待进一步证实。MiR-892a和miR-3149在外周血中明显持续增高,有可能成为房颤早期预警诊断的标志物。
MiR-3664-5p的靶基因N型Ca2+通道亚基C ACNA1B已证实与神经突触递质释放有关[45];靶基因CAMTA2(钙调素结合转录调控因子2)是心肌肥厚的关键信号分子[46]。最新的研究发现,这种新的转录共激活因子家族CAMTAs通过激活心房利钠肽(ANF)可促进心肌肥厚[47]。心房利钠肽是心肌肥厚的特异性信号分子。MiR-574-3p参与调控CACNA1C,其下降也可能与L型Ca2+电流(IcaL)降低有关。MiR-4473参与调控 HCN4、HCN1和KCNJ2,其在冠状窦血下降,可能与HCN4增加、异位节律点的兴奋性增加及KCNJ2(内向整流钾电流Ik1通道亚单位)增加、Ik1电流增多有关。Ik1在动作电位3相复极末期起重要作用[48]。房颤患者及动物实验表明[49],Ik1电流幅值和密度均明显升高,慢性房颤患者IK1的密度是窦性心律者的2倍,从而引起静息电位下移,易引起折返,诱发房颤。MiR-4423-5p的靶基因KCNJ13,对房颤的作用目前尚不清楚。MiR-3591-3p下降可能与细胞内Ca2+增加有关(靶基因CAMK2A和CAMK2D)。MiR-3150主要调控CACNG2,与中枢谷氨酸受体的兴奋性有关,与房颤的关系未知。MiR-4787-5p及miRK12-6-3p尚未发现调控离子通道蛋白的靶基因,其作用有待进一步研究。
总之,房颤电重构不仅与多个离子流失平衡有关,更重要的是与多个离子通道蛋白的调控miRNAs异常相关[50]。冠状窦血表达差异的miRNA更能直接反映房颤发作时心肌miRNA的调控状况和代谢水平。射频消融手术不仅终止了房颤,同时逆转或改变了miRNA的调控异常[51],对窦律的维持和防止房颤的复发有重要意义。有些关键miRNAs同时调控几个重要的离子通道蛋白,如miR-1266不仅调控SCN5A蛋白决定Na+离子流的平衡,还调控KCNH2和KCNE1 K+离子通道蛋白,影响Ikr和IKs离子流的平衡。这些同时调控多个离子通道蛋白的miRNA,有可能成为未来房颤干预的新靶点。
图1 冠状窦血miRNA表达差异聚类图。
图2 MiR-1266与SCN5A基因荧光素酶结合实验结果
图3 MiR-4279 与 CACNA1C、KCNH2、KCNE1、KCNJ5双荧光素酶结合实验结果
[1]Yamac AH,Kucukbuzcu S,Ozansoy M,et al.Altered expression of micro-RNA 199a and increased levels of cardiac SIRT1 protein are associated with the occurrence of atrial fibrillation after coronary artery bypass graft surgery.Cardiovascular Pathology,2016,25:232-236.
[2]Khalyfa A,Kheirandish-Gozal L,Bhattacharjee R,et al.Circulating miRNAs as Potential Biomarkers of Endothelial Dysfunction In Obese Children.Chest,2016,149:786-800.
[3]Weckbach LT,Grabmaier U,Clauss S,et al.MicroRNAs as adiagnostic tool for heart failure and atrial fibrillation.Curr Opin Pharmac,2016,27:24-30.
[4]Takahashi K,Sasano T,Sugiyama K,et al.High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b.J Mol Cel Cardiol,2016,90:38-46.
[5]BernardoBC,BlaxallBC.From BenchtoBedside: New approaches to therapeutic discovery for heart failure.Heart,Lun and Circ,2016,25:425-434.
[6]Ali SS,Kala C,Abid M,et al.Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics.J Acu Dis,2016,5:9-15.
[7]Li M,Zhang J.Circulating MicroRNAs:Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases.Biomed Res Int,2015,2015:730535.
[8]Orenes-Pinero E,Quintana-Giner M,Romero-Aniorte AI,et al.Novelbiomarkers in cardiology:MicroRNAs in atrial fibrillation.Arch Cardiol Mex,2015,15:31-32.
[9]杨水祥,徐桂玉,赵楠楠,等.心房颤动患者冠状窦血小分子RNA表达差异与价值.中华老年心脑血管病杂志,2014,16:726-731.
[10]Zhao Y,Huang Y,Li W,et al.Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-5p.Biochim Biophys Acta,2015,1852:2024-2034.
[11]Ziyadeh-Isleem A,Clatot J,Duchatelet S,et al.A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation.Heart Rhythm,2014,11:1015-1023.
[12]Kyle JW,Makielski JC.Diseases caused by mutations in Nav1.5 interacting proteins.Cardiac ElectrophysiolClinics,2014,6:797-809.
[13]Poulet C,Wettwer E,Grunnet M,et al.Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation.PLoS One,2015,10:e0131432.
[14]Aguilar M,Nattel S.The past,present and potential future of sodium channelblock asan atrialfibrillation suppressing strategy.J Cardiovasc Pharmacol,2015,66:432-40.
[15]Savio-Galimberti E,Weeke P,Muhammad R,et al.SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation.Cardiovasc Res,2014,104:355-363.
[16]Yue L,Melnyk P,Gaspo R,et al.Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation.Circ Res,1999,84:776-784.
[17]Gaspo R,Bosch RF,Talajic M,et al.Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model.Circulation,1997,96:4027-4035.
[18]Sossalla S,Kallmeyer B,Wagner S,et al.Altered Na(+)currents in atrial fibrillation effects of ranolazine on arrhythmias and contractilityin human atrialmyocardium.JAm Coll Cardiol,2010,55:2330-2342.
[19]Liebeskind BJ,Hillis DM,Zakon HH.Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient,voltage-insensitive clade.Mol Biol Evol,2012,29:3613-3616.
[20]Chang YS,Yang YW,Lin YN,et al.Mutation Analysis of KCNQ1,KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients.Int Heart J,2015,56:450-453.
[21]Wang QS,Wang XF,Chen XD,et al.Genetic polymorphism of KCNH2 confers predisposition of acquired atrial fibrillation in Chinese.J Cardiovasc Electrophysiol,2009,20:1158-1162.
[22]Hong K,Bjerregaard P,Gussak I,et al.Short QT syndrome and atrialfibrillation caused by mutation in KCNH2.J Cardiovasc Electrophysiol,2005,16:394-396.
[23]Gorshkova ES,Minushkina LO,Brovkin AN,et al.Genetic predisposition to development of atrial fibrillation in patients with hypertensive disease.Kardiologiia,2010,50:19-24.
[24]杨宝峰,杜智敏,泽田光平.氟卡尼电压和频率依赖性抑制豚鼠心房细胞迟发性外向钾电流.中国药理学报,1994,15:28-32.
[25]Splawski I,Timothy KW,Sharpe LM,et al.Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.Cell,2004,119:19-31.
[26]Lu Y,Zhang Y,Wang N,et al.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.Circulation,2010,122:2378-2387.
[27]Soon JL,Ping L,Chua YL,et al.Absence of calcium channel alpha1C-subunit mutation in human atrial fibrillation.Asian Cardiovasc Thorac Ann,2010,18:349-353.
[28]Greiser M,Halaszovich CR,Frechen D,et al.Pharmacological evidence for altered src kinase regulation of I(Ca,L)in patients with chronic atrial fibrillation.Naunyn Schmiedebergs Arch Pharmacol,2007,375:383-392.
[29]Hsueh CH,Chang PC,Hsieh YC,et al.Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium.Heart Rhythm,2013,10:891-898.
[30]Ellinor PT,Lunetta KL,Glazer NL,et al.Common variants inKCNN3 are associated with lone atrial fibrillation.Nat Genet,2010,42:240-244.
[31]Ellinor PT,Lunetta KL,Albert CM,et al.Meta-analysis identifies six new susceptibility loci for atrial fibrillation.Nat Genet,2012,44:670-675.
[32]Jiménez-Garduno AM,Mitkovski M,Alexopoulos IK,et al.KV10.1 K(+)-channel plasma membrane discrete domain partitioning and its functional correlation in neurons.Biochim Biophys Acta,2014,1838:921-931.
[33]Sano Y,Mochizuki S,Miyake A,et al.Molecular cloning and characterization of Kv6.3,a novel modulatory subunit for voltage-gated K (+) channel Kv2.1.FEBS Lett,2002,512:230-234.
[34]Fantozzi I,Platoshyn O,Wong AH,et al.Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K+channels in human pulmonary artery smooth muscle cells.Am J Physiol Lung Cell Mol Physiol,2006,291:L993-1004.
[35]Li JY,Wang HJ,Xu B,et al.Hyperpolarization activated cation current(I(f))in cardiac myocytes from pulmonary vein sleeves in the canine with atrial fibrillation.J Geriatr Cardiol,2012,9:366-374.
[36]Aguilar M,Qi XY,Huang H,et al.Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation.Biophys J,2014,107:2444-2455.
[37]He XZ,Wang HY,Shen Y,et al.Cardiomyocyte progenitors in a canine pulmonary vein model of persistent atrial fibrillation.J Cardiol,2012,60:242-247.
[38]Biliczki P,Girmatsion Z,Brandes RP,et al.Trafficking-deficient long QT syndrome mutation KCNQ1-T587M confers severe clinical phenotype by impairment of KCNH2 membrane localization:evidence for clinically significant IKr-IKs alpha-subunit interaction.Heart Rhythm,2009,6:1792-1801.
[39]Liin SI,Silvera Ejneby M,Barro-Soria R,et al.Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel.Proc Natl Acad Sci USA,2015,112:5714-5719.
[40]Cheng CJ,Sung CC,Wu ST,et al.Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance.J Clin Endocrinol Metab,2015,100:E155-163.
[41]Han HG,Wang HS,Yin Z,et al.KCNE1 112G>;a polymorphism and atrial fibrillation risk:a meta-analysis.Genet Mol Res,2014,13:8367-8377.
[42]Li YY,Wang LS,Lu XZ.Mink S38G gene polymorphism and atrial fibrillation in the Chinese population:a meta-analysis of 1871 participants.Scientific World Journal,2014,2014:768681.
[43]Liang C,Li X,Xu Y,et al.KCNE1 rs1805127 polymorphism increases the risk of atrial fibrillation:a meta-analysis of 10 studies.PLoS One,2013,8:e68690.
[44]Fantozzi I,Platoshyn O,Wong AH,et al.Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K+channels in human pulmonary artery smooth muscle cells.Am J Physiol Lung Cell Mol Physiol,2006,291:L993-1004.
[45]Weiss J,Pyrski M,Weissgerber P,et al.Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2.Eur J Neurosci,2014,40:3422-3435.
[46]Schwartz RJ,Schneider MD.CAMTA in cardiac hypertrophy.Cell,2006,125:427-429.
[47]Song K,Backs J,McAnally J,et al.The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing classⅡhistone deacetylases.Cell,2006,125:453-466.
[48]Bosch RF,Zeng XR,Grammer JB,et al.Ionic mechanisms of electrical remodeling in human atrial fibrillation.Cardiovasc Res,1999,44:121-131.
[49]Allessie MA,Boyden PA,Camm AJ,et al.Pathophysiology and prevention of atrial fibrillation.Circulation,2001,103:769-777.
[50]Nattel S,Frelin Y,Gaborit N,et al.Ion-channel mRNA-expression profiling:Insights into cardiac remodeling and arrhythmic substrates.J Mol Cell Cardiol,2010,48:96-105.
[51]McManus DD,Tanriverdi K,Lin H.Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation(the miRhythm study).Heart Rhythm,2015,12:3-10.
The radiofrequency ablation may reverse the abnormal miRNA expression in coronary sinus blood of patients with atrial fibrillation
XU Gui-yu,ZHAO Nan-nan,YANG Shui-xiang.Department of Cardiology,the Capital Medical University Affiliated Beijing Shijitan Hospital,Beijing 100038,China
YANG Shui-xiang,E-mail:sxyang68@163.com
Objective To study the effect of radiofrequency ablation(RFA)on miRNA differential expression in coronary sinus blood(SB)of atrial fibrillation(AF)patients,and try to identify the possible pathogenesis of AF and miRNA targets for intervention in future.Methods 30 AF patients(10 paroxymal,10 persistent and 10 permanent AF patients)were enrolled,alongside 10 healthy subjects as controls.Peripheral blood (PB)samples were obtained before and at 3 months after RFA respectively.The total RNA was extracted and hybridized with the microRNA chips(microRNA v 18.0),and the differential expression of miRNA and clustering analysis in whole genome were made with Volcano Plot and tMEV software respectively,and validated by Real-time PCR.The target gene analysis of miRNAs was predicted through the Mirbase,Miranda and Targetscan databases.The important miRNAs were made for dual luciferase binding experiment to analyze and validate target genes.Results There were 142 miRNAs differential expression in SB of pre-operation AF patients compared with PB of patient-self control,in which,6 miRNAs were increased and 8 miRNAs were decreased significantly(P<0.05).Then,in the compare of PB in AF patients after RFA with which of self-control before RFA,there were 3 miRNAs up-regulated and down-regulated respectively in above increased 6 miRNAs,while miR-1266 was down-regulated 204.17-fold.In above decreased 8 miRNAs,7 of them were down-regulated again after RFA,while miR-574-3p up-regulated 5.25-fold.SCN5A was the target gene of miR-1266,and CACNA1C was the target gene of miR-4279 confirmed with Luciferase binding experiments.Conclusion RFA can reverse the abnormal expressions of miRNAs in AF patients.The differential expression of miRNAs in SB can directly reflect the regulatory status of miRNAs incardiomyocytes in AF attack.MiR-1266 may become the future target for AF intervention.
Atrial fibrillation;Radiofrequency ablation;miRNA;Ion channel protein;Genomics research
100038 北京市,首都医科大学附属北京世纪坛医院心内科
杨水祥,E-mail:sxyang68@163.com
10.3969/j.issn.1672-5301.2016.08.013
R541.7
A
1672-5301(2016)08-0720-07
2016-02-14)