APP下载

Hs(RR3)空间内非线性混合Schrödinger方程组解的唯一性

2016-06-02贾翠

湖北汽车工业学院学报 2016年1期
关键词:方程组定性湖北

贾翠

(湖北汽车工业学院理学院,湖北十堰442002)



Hs(RR3)空间内非线性混合Schrödinger方程组解的唯一性

贾翠

(湖北汽车工业学院理学院,湖北十堰442002)

摘要:依据仿积技术和Besov空间,以Schrödinger容许对为切入点,证明了当时,三维空间中的非线性混合Schrödinger方程组系统中的解的无条件唯一性。

关键词:唯一性;Strichartz估计;仿积估计;Hölder不等式

oi:10.3969/j.issn.1008-5483.2016.01.016

0 引言和主要结果

考虑如下非线性混合Schrödinger方程组

混合Schrödinger方程组(1)是由Manakov和Zakharov在考虑完整积分和离散动力学的Stochas⁃tization时引入的。

简单地回顾一些PDE问题的解的无条件唯一性的结果。在和基于先验估计的辅助空间(Strichartz空间,平滑空间,…)框架内常运用不动点理论构造强解。在辅助空间内解的唯一性称为有条件的唯一性。另一方面,无辅助空间的唯一性称为无条件唯一性。涉及到的无条件唯一性的参考文献主要是关于Schrödinger方程[1-9],波动方程[4,10-13],Navier-Stokes系统[14],Benjamin-Ono方程[15],Zakharov系统和Maxwell-Dirac方程情形[16-17],Klein-Gorden-Schödinger系统[18]和Dirac-Klein-Gorden方程[19]。

基于以上结果,本文的目的是证明系统(1)的解的无条件唯一性。关于非线性混合Schrödinger方程组(1),研究过H1(R3)空间中解的局部适定性。因此,可以总结非线性混合Schrödinger方程组(1)的局部适定性如下:

有解的局部适定性,一个很自然的问题是这个解是不是无条件唯一的。现陈述主要结果。

1 符号和预备知识

1.1符号

是有界的,当r=∞作一些必要的修改。引进时空Lebesgu空间的范数为

再回顾齐次空间Ḃsp,q的定义。对任一

1.2一些估计

运用Hölder’s不等式和Sobolev嵌入,得到引理2~4。

下述仿积引理是证明主要结果的关键工具,可用仿积估计证明。

2 主要结果的证明

参考文献:

[1]T Cazenave,F Weissler. The Cauchy Problem for the Critical Nonlinear Schrödinger Equations in HS[J]. Non⁃linear Analysis:Theory, Methods & Applications, 1990, 14(10):807-836.

[2]T Kato. On nonlinear Schrödinger Equations,II. HS-solu⁃tions and Uncontitional Well-Posedness[J]. Journal d’Analyse Mathématique,1995,67(1):281-306.

[3]T Keel,T Tao. Endpoint Strichartz Estimates[J]. Amer J Math, 1998,120(5):955-980.

[4]Furioli G,Planchon F,Terraneo E. Unconditional Wellposedness for Semilinear Schrödinger and Wave Equa⁃tions in HS[J]. Contemporary Mathematics,2003,320:147-156.

[5]Rogers K M. Unconditional Well-posedness for Subcriti⁃cal NLS in HS[J]. Comptes Rendus Mathematique, 2007,345(7):395-398.

[6]Yin Yin Su Win,Tsutsumi Y. Unconditional Uniqueness of Solution for the Cauchy Problem of the Nonlinear Schrödinger Equation[J]. Hokkaido Mathematical Jour⁃nal,2008,37(4):839-859.

[7]Furioli G,Terraneo E. Besov Spaces and Unconditional Well-posedness for the Nonlinear Schrödinger equation in HS(Rn)[J]. Commun Contemp Math, 2003,5(3):349-367.

[8]Triebel H. Theory of Function Spaces[M]. Basel:Birkhäuser,1983.

[9]T Cazenave. Courant Lecture Notes in Mathematics:Vol⁃ume 10 Semilinear Schrödinger Equations[M]. Wash⁃ington D.C.:American Mathematical Society, 2003.

[10]Bulut A,Czubak M,Dong L,et al. Stability and Uncon⁃ ditional Uniqueness of Solutions for Energy Critical Wave Equations in High Dimensions[J]. Communica⁃tions in Partial Differential Equations,2013,38(4):575-607.

[11]Masmoudi N,Planchon F. On Uniqueness for the Criti⁃cal Wave Equation[J]. Communications in Partial Dif⁃ferential Equations,2006,31(7):1099-1107.

[12]Planchon F. On Uniqueness for Semilinear Wave Equa⁃tions[J]. Math Z, 2003,244(3):587-599.

[13]Struwe M. Uniqueness for Critical Nonlinear Wave Equa⁃tions and Wave Maps via the Energy Inequality[J]. Comm Pure Appl Math,1999,52(9):1179-1188.

[14]Fujita H,Kato T. On the Navier-Stokes Initial Value Problem I[J]. Arch Rational Mech Anal,1964,16 (4):269-315.

[15]Burq N,Planchon F. The Benjamin-Ono Equation in Energy Space,Phase Space Analysis of Partial Differen⁃tial Equations[J]. Progr Nonlineqr Differential Equa⁃tions,2006,69:55-62.

[16]Masmoudi N,Nakanishi K. Uniqueness of Solutions for Zakharov Systems[J]. Funkcial Ekvac,2009,52(2):233-253.

[17]Masmoudi N,Nakanishi K. Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gor⁃den Equations[J]. Comm Math Phys,2003,243(1):123-136.

[18]H Pecher. Some New Well-posedness Results for the Klein- Gorden- Schrödinger System[J]. Differential And Integral Equations, 2011,25(1/2):117-142.

[19]Selberg S,Tesfahun A. Remarks on Regularity and Uniqueness of the Dirac- Klein- Gorden Equations in one Space Dimension[J]. NoDEA Nonlinear Dfferrn⁃tial Equations and Applications,2010,17(4):453-465.

Unconditional Uniqueness for Nonlinear Coupled Schrödinger Equations in Hs()

Jia Cui
(School of Science, Hubei University of Automotive Technology, Shiyan 442002, China)

Abstract:According to the paraproduct techniques and Besov spaces, based on Schrödinger-admissible pairs, the unconditional uniqueness of the solutions to the system of the nonlinear coupled Schrödinger equation in Ct(Hs)was provedKey words: uniqueness; Strichartz estimation; praproduct estimation; Hölder inequality

作者简介:贾翠(1988-),女,山东泰安人,硕士,从事应用数学方面的研究。E-mail:jiacui3621651@163.com

收稿日期:2015-10-31

中图分类号:O175.29

文献标识码:A

文章编号:1008-5483(2016)01-0067-04 d

猜你喜欢

方程组定性湖北
The rise of China-Chic
深入学习“二元一次方程组”
分裂平衡问题的Levitin-Polyak适定性
《二元一次方程组》巩固练习
驰援湖北
湖北武汉卷
一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离
当归和欧当归的定性与定量鉴别
湖北現“最牛釘子戶” 車道4變2給樓讓路
“挖”出来的二元一次方程组