ω-3多不饱和脂肪酸对大脑突触结构和传递功能影响的研究进展*
2016-03-09刘志国张宏宇王华林王丽梅刘烈炬
刘志国, 张宏宇, 王华林, 王丽梅, 刘烈炬
武汉轻工大学生物与制药工程学院,武汉 430023
ω-3多不饱和脂肪酸对大脑突触结构和传递功能影响的研究进展*
刘志国, 张宏宇, 王华林, 王丽梅, 刘烈炬△
武汉轻工大学生物与制药工程学院,武汉 430023
-3多不饱和脂肪酸; 大脑功能; 突触传递; 神经细胞; 受体
当突触前释放的谷氨酸递质与突触后膜谷氨酸受体结合后,可触发一系列连锁反应,导致突触功能的持续增强或减弱,形成长时程增强(long term potentiation,LTP)或长时程抑制(long term depression,LTD)。突触后谷氨酸受体可分为促离子型受体和促代谢型受体2种类型。促离子型受体可再分为海人藻酸(kainic acid,KA)受体、AMPA(2-amino-3-propionic acid)受体和NMDA(N-methyl-d-aspartate)受体(包括NR1、NR2A、NR2B等亚型)。促代谢型受体包括mGluR1~8等亚型。LTP的形成主要依靠蛋白激酶,如CaMKⅡ(calcium-calmodulin-dependent protein kinase Ⅱ),使目标蛋白,如CREB(cyclic adenosine monophosphate response element binding protein)等磷酸化,导致突触后膜AMPA受体增加,突触传递功能增强。不同于LTP,LTD的产生主要依靠钙依赖性磷酯酶对目标蛋白的去磷酸化作用。突触后磷酸酯酶可导致突触AMPA受体内吞,从而减少对谷氨酸递质的敏感性。
递质在突触前神经元末梢的释放包括神经递质的合成、囊泡的形成、动员(mobilization)、摆渡(trafficking)、锚泊(targeting)、融合(fusion)和出胞(exocytosis)等过程。膜脂质是大脑质膜主要的组件,对出胞、摆渡、内吞起着重要的作用[11]。-3 PUFA(特别是DHA)作为膜的重要成分,可通过影响大脑质膜的特性或是作为游离脂肪酸对突触前谷氨酸递质释放进行干预[12]。-3 PUFA可以促进囊泡的更新和出胞过程。适量的-3 PUFA可以增加神经递质的释放并提高突触的传递效率[13]。在富含DHA的培养液中,胚胎海马神经元自发突触电流振幅和频率均高于对照,而这种突触活动增加主要发现于谷氨酸类神经元[4]。
已释放的递质通常经突触前末梢重摄取,或被酶代谢消除。星形胶质细胞在谷氨酸和GABA神经元突触间递质的清除中扮演重要的角色[1],同时是-3 PUFA调节突触传递功能的重要靶点。星形胶质细胞可根据信号的强度,通过谷氨酸的摄取和运输以及对突触小体体积的调节,将谷氨酸的浓度维持在一定的安全范围内[18-19]。过度的刺激(如应激反应)以及星形胶质细胞调制功能的下降都会破坏谷氨酸能神经元突触内环境的稳定,导致谷氨酸的浓度过高,引起神经细胞兴奋中毒(excitotoxicity)以致死亡。上述过程与衰老和多种疾病引起的脑损伤密切相关[19]。
PUFA除了通过影响突触前膜递质的释放和突触后膜受体的活动而调节突触传递功能外,还可以通过从神经和神经胶质细胞质膜分离出来的游离脂肪酸(特别是DHA和AA),作为体内重要的信号分子,参与体内信号转导,涉及肌醇磷脂信使系统[28]、类花生酸信号转导系统[29]以及磷脂酰肌醇-3激酶(PI3K)-AKT通路等[30]。磷脂酶是决定局部游离脂肪酸可用度的关键酶。磷脂酶包括3种重要的亚型,即磷脂酶A2(Phospholipase A2,PLA2)、磷脂酶C(phospholipase C,PLC)和磷脂酶D(phospholipase D,PLD)。3种磷脂酶分别作用于磷脂中的不同基团,产生不同的酶解产物。在哺乳动物细胞中包含多种PLA2的同工酶,例如分泌型磷脂酶A2(sPLA2)、胞浆型磷脂酶A2(cPLA2,Ca2+依赖型磷脂酶)和Ca2+非依赖型磷脂酶A2(iPLA2)等。PLA2可直接催化磷脂sn-2脂酰键的水解,产生AA、DHA和溶血磷脂。PLC和PLD则不能直接产生AA,但可以通过AA的前体,二酰甘油(DAG)或磷脂酸(PA)释放AA。释放出的AA或成为逆行信使(retrograde messenger)[31],或通过各种代谢酶类(如环氧酶、脂氧合酶和加双氧酶等)生成多种类花生酸物质,如前列腺素、白细胞三烯和凝血蒽烷等[32]。类花生酸在机体炎性反应中起着重要的作用。不同的是,类花生酸主要产生的是促炎因子,而DHA主要产生抗炎因子[32]。
如前所述,谷氨酸是脑内主要的兴奋性神经元,而γ-氨基丁酸(GABA)则是主要的抑制性神经元。GABA在大脑皮层浅层和小脑浦肯野细胞层含量最高,同时存在于新纹状体内的中间神经元。GABA受体可分为GABAa、GABAb和GABAc等3种类型。GABAa和GABAc属于离子通道型受体,与Cl-通道偶联。GABAb属于代谢型受体。GABAa和GABAb广泛分布于中枢神经系统,参与了神经系统的各种功能。虽然GABA能神经元分布的区域与大脑的认知功能密切相关,但GABA能神经系统是否参与了-3 PUFA增强学习记忆的功能,只是在近年来才开始有所关注。虽然与谷氨酸相比,我们对GABA的作用知道得很少,然而却是探讨-3 PUFA作用机制的一个新的重要领域。实验发现高饱和脂肪酸饮食可以导致海马和下丘脑GABAa、5-HT1及CB1与受体的结合密度增加。膳食中DHA的干预可防止高饱和脂肪酸饮食对海马和下丘脑受体密度的影响。由于海马和下丘脑与大脑认知功能密切有关,提示了GABAa等受体有可能介导了DHA增强大脑学习记忆的功能[40]。来自海马体兴奋性尖波(sharp waves,SPWs)被认为颞叶癫痫患者发作的前兆。采用体外脑片灌流,发现在海马切片CA1和CA3区域,DHA可以减少SPWs发生率,上述作用可以被GABA受体阻滞剂所拮抗。实验表明DHA可以减少小鼠海马CA3回路的兴奋性,而这种作用可能与GABA神经系统的调节作用有关,提示DHA有可能通过对海马神经元兴奋性的调节,影响大脑的学习记忆功能[41]。在大脑发育期,DHA迅速的积累对正常神经的结构和功能至关重要。在脑发育的关键时期,DHA缺乏会造成多种大脑功能障碍,包括学习记忆功能和成年后的抑郁和焦虑症等,实验发现GABAa系统可能参与了这些作用[42]。此外GABA还可能介导了-3 PUFA对大脑的保护作用,如丙酸所造成的神经中毒等,有利于大脑学习记忆功能的维持[43]。
在生理条件下胆碱能神经元与机体的衰老密切相关。在病理条件下胆碱能神经元与多种老年性神经系统的疾病有关,例如阿尔茨海默病(AD)等。AD是以进行性智能衰退为主要临床表现的大脑变性疾病,俗称老年痴呆症。在病理特征上表现为老年斑、神经元纤维缠结、海马锥体细胞胆碱能神经元的变性坏死。AD的发病与脑内Aβ(β淀粉样蛋白)异常沉淀有关。Aβ对周围的突触和神经元具有毒性作用,可导致神经细胞变性死亡。随着神经元的变性坏死,导致脑内相应的神经递质水平下降,其中最主要的是乙酰胆碱(acetylcholine,Ach)。在AD患者中,脑内的Ach的水平下降得最早和最为明显。增加脑内Ach的水平是目前AD药物治疗的重要方法。例如,采用胆碱酯酶抑制剂,通过抑制Ach的酶解,增加Ach的含量,增加胆碱能神经元的传递功能。但这些拟胆碱类药物,虽然能缓解患者认知能力的下降,但并不能延缓AD病程的发展。
多巴胺能神经元的递质是多巴胺(DA)主要存在于中枢神经系统,包括黑质-纹状体系统、中脑边缘和皮质系统以及结节漏斗部3个部分。脑内的DA主要由中脑黑质产生,沿黑质-纹状体系统投射,在纹状体内储存。DA神经元投射的区域与大脑的学习记忆功能密切相关。多巴胺受体包括DA1~DA55种亚型,都是G蛋白偶联受体。主要参与对躯体运动、精神情绪活动、垂体内分泌以及大脑的认知功能的调节。
在中枢神经系统,5-羟色胺(5-HT)能神经元胞体主要集中于低位脑干的中缝核内。其纤维投射分上行部分和下行部分。下行部分支配脊髓和低位脑干。上行部分的神经元位于中缝核头部,纤维投射到纹状体、丘脑、小丘脑、边缘前脑和大脑皮层等区域。5-HT在中枢神经系统的主要功能是调节痛觉和镇痛、精神和情绪活动等。但值得注意的是5-HT分布的区域与大脑的学习记忆和认知功能密切相关。5-HT的受体多而复杂,已知有5-HT1至5-HT7等多种受体,进一步分为不同的亚型如5-HT1A、5-HT2B等,其对大脑学习记忆功能的影响已开始受到关注。
综上所述,突触是完成大脑功能的基础,包括大脑的学习记忆功能和认知能力。然而大脑的功能是复杂的,大脑的学习记忆功能和认知能力受到多种精神因素的影响,例如抑郁症、精神分裂症和情绪失调症、注意缺陷和多动症等,因此多个不同的系统,从不同的方面,参与了大脑学习记忆功能的调节。-3 PUFA对谷氨酸、GABA、Ach、DA和5-HT受体外,还有许多受体参与了大脑学习记忆功能的调节,包括Na+、K+、Ca2+离子通道型受体、辣椒素受体、酸通道受体和大麻素受体等,但具体作用机制并不清晰,亟待后期进行深入研究。
[1] Denis I,Potier B,Vancassel S,et al.Omega-3 fatty acids and brain resistance to ageing and stress:body of evidence and possible mechanisms[J].Ageing Res Rev,2013,12(2):579-594.
[2] Neves G,Cooke S F,Bliss T V.Synaptic plasticity,memory and the hippocampus:a neural network approach to causality[J].Nat Rev Neurosci,2008,9(1):65-75.
[3] Nishikawa M,Kimura S,Akaike N.Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex[J].J Neurophysiol,1994,475(1):83-93.
[4] Cao D,Kevala K,Kim J,et al.Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function[J].J Neurochem,2009,111(2):510-521.
[5] Kawashima A,Harada T,Kami H,et al.Effects of eicosapentaenoic acid on synaptic plasticity,fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells[J].J Nutr Biochem,2010,21(4):268-277.
[6] Wu A,Ying Z,Gomez-Pinilla F.Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition[J].Neuroscience,2008,155(3):751-759.
[7] Chytrova G,Ying Z,Gomez-Pinilla F.Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems[J].Brain Res,2010,1341:32-40.
[8] Sakamoto T,Cansev M,Wurtman R J.Oral supplementation with docosahexaenoic acid and uridine-5’-monophosphate increases dendritic spine density in adult gerbil hippocampus[J].Brain Res,2007,1182:50-59.
[9] Cansev M,Wurtman R J.Chronic administration of docosahexaenoic acid or eicosapentaenoic acid,but not arachidonic acid,alone or in combination with uridine,increases brain phosphatide and synaptic protein levels in gerbils[J].Neuroscience,2007,148(2):421-431.
[10] He C,Qu X,Cui L,et al.Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid[J].Proc Natl Acad Sci USA,2009,106(27):11370-11375.
[11] Rohrbough J,Broadie K.Lipid regulation of the synaptic vesicle cycle[J].Nat Rev Neurosci,2005,6(2):139-150.
[12] Mathieu G,Denis S,Langelier B,et al.DHA enhances the noradrenaline release by SH-SY5Y cells[J].Neurochem Int,2010,56(1):94-100.
[13] Hennebelle M,Champeil-Potokar G,Lavialle M,et al.Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus[J].Nutr Rev,2014,72(2):99-112.
[14] Yoshida S,Yasuda A,Kawazato H,et al.Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task[J].J Neurochem,1997,68(3):1261-1268.
[15] Latour A,Grintal B,Champeil-Potokar G,et al.Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1[J].Aging Cell,2013,12(1):76-84.
[16] Darios F,Davletov B.Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3[J].Nature,2006,440(7085):813-817.
[17] Pongrac J L,Slack P J,Innis S M.Dietary polyunsaturated fat that is low in(n-3)and high in(n-6)fatty acids alters the SNARE protein complex and nitrosylation in rat hippocampus[J].J Nutr,2007,137(8):1852-1856.
[18] Maragakis N J,Rothstein J D.Glutamate transporters:animal models to neurologic disease[J].Neurobiol Dis,2004,15(3):461-473.
[19] Sheldon A L,Robinson M B.The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention[J].Neurochem Int,2007,51(6/7):333-355.
[20] Bourre J M,Pascal G,Durand G,et al.Alterations in the fatty acid composition of rat brain cells(neurons,astrocytes,and oligodendrocytes)and of subcellular fractions(myelin and synaptosomes)induced by a diet devoid of n-3 fatty acids[J].J Neurochem,1984,43(2):342-348.
[21] Champeil-Potokar G,Denis I,Goustard-Langelier B,et al.Astrocytes in culture require docosahexaenoic acid to restore the n-3/n-6 polyunsaturated fatty acid balance in their membrane phospholipids[J].J Neurosci Res,2004,75(1):96-106.
[22] Champeil-Potokar G,Chaumontet C,Guesnet P,et al.Docosahexaenoic acid(22:6 n-3)enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes[J].Eur J Neurosci,2006,24(11):3084-3090.
[23] Appendino G,Minassi A,Berton L,et al.Oxyhomologues of anandamide and related endolipids:chemoselective synthesis and biological activity[J].J Med Chem,2006,49(7):2333-2338.
[24] Magistretti P J.Neuron-glia metabolic coupling and plasticity[J].J Exp Biol,2006,209(Pt 12):2304-2311.
[25] Pifferi F,Jouin M,Alessandri J M,et al.n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier[J].Prostag Leukotr Ess,2007,77(5/6):279-286.
[26] Grintal B,Champeil-Potokar G,Lavialle M,et al.Inhibition of astroglial glutamate transport by polyunsaturated fatty acids:evidence for a signalling role of docosahexaenoic acid[J].Neurochem Int,2009,54(8):535-543.
[27] Volterra A,Trotti D,Cassutti P,et al.High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes[J].J Neurochem,1992,59(2):600-606.
[28] Ma D,Zhang M,Larsen C P,et al.DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene[J].Brain Res,2010,1330:1-8.
[29] Wall R,Ross R P,Fitzgerald G F,et al.Fatty acids from fish:the anti-inflammatory potential of long-chain omega-3 fatty acids[J].Nutr Rev,2010,68(5):280-289.
[30] Gu Z,Wu J,Wang S,et al.Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells[J].Carcinogenesis,2013,34(9):1968-1975.
[31] Bazan N G.Synaptic signaling by lipids in the life and death of neurons[J].Mol Neurobiol,2005,31(1-3):219-230.
[32] Tassoni D,Kaur G,Weisinger R S,et al.The role of eicosanoids in the brain[J].Asia Pac J Clin Nutr,2008,17(Suppl 1):220-228.
[33] Sun G Y,Xu J,Jensen M D,et al.Phospholipase A2 in the central nervous system:implications for neurodegenerative diseases[J].J Lipid Res,2004,45(2):205-213.
[34] Phillis J W,O’regan M H.A potentially critical role of phospholipases in central nervous system ischemic,traumatic,and neurodegenerative disorders[J].Brain Res Rev,2004,44(1):13-47.
[35] Ramadan E,Rosa A O,Chang L,et al.Extracellular-derived calcium does not initiateinvivoneurotransmission involving docosahexaenoic acid[J].J Lipid Res,2010,51(8):2334-2340.
[36] Farooqui A A,Horrocks L A,Farooqui T.Modulation of inflammation in brain:a matter of fat[J].J Neurochem,2007,101(3):577-599.
[37] Rao J S,Ertley R N,Demar J C,et al.Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex[J].Mol Psychiatr,2007,12(2):151-157.
[38] Sun G Y,Shelat P B,Jensen M B,et al.Phospholipases A2 and inflammatory responses in the central nervous system[J].Neuromol Med,2010,12(2):133-148.
[39] Menard C,Chartier E,Patenaude C,et al.Calcium-independent phospholipase A(2)influences AMPA-mediated toxicity of hippocampal slices by regulating the GluR1 subunit in synaptic membranes[J].Hippocampus,2007,17(11):1109-1120.
[40] Yu Y,Wu Y,Patch C,et al.DHA prevents altered 5-HT1A,5-HT2A,CB1 and GABAA receptor binding densities in the brain of male rats fed a high-saturated-fat diet[J].J Nutr Biochem,2013,24(7):1349-1358.
[41] Taha A Y,Zahid T,Epps T,et al.Selective reduction of excitatory hippocampal sharp waves by docosahexaenoic acid and its methyl ester analogex-vivo[J].Brain Res,2013,1537:9-17.
[42] Chen H F,Su H M.Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life[J].J Nutr Biochem,2013,24(1):70-80.
[43] El-Ansary A K,Al-Daihan S K,El-Gezeery A R.On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups[J].Lipids Health Dis,2011,10:142.
[44] Aid S,Vancassel S,Linard A,et al.Dietary docosahexaenoic acid[22:6(n-3)]as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus[J].J Nutr,2005,135(5):1008-1013.
[45] Aid S,Vancassel S,Poumes-Ballihaut C,et al.Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus[J].J Lipid Res,2003,44(8):1545-1551.
[46] Nishizaki T,Ikeuchi Y,Matsuoka T,et al.Short-term depression and long-term enhancement of ACh-gated channel currents induced by linoleic and linolenic acid[J].Brain Res,1997,751(2):253-258.
[47] Minami M,Kimura S,Endo T,et al.Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats[J].Pharmacol Biochem,1997,58(4):1123-1129.
[48] Favreliere S,Perault M C,Huguet F,et al.DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus[J].Neurobiol Aging,2003,24(2):233-243.
[49] Taepavarapruk P,Song C.Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1 beta administrations:effects of omega-3 fatty acid EPA treatment[J].J Neurochem,2010,112(4):1054-1064.
[50] Zhang W,Li R,Li J,et al.Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway[J].PLoS One,2013,8(7):e68489.
[51] Lavialle M,Denis I,Guesnet P,et al.Involvement of omega-3 fatty acids in emotional responses and hyperactive symptoms[J].J Nutr Biochem,2010,21(10):899-905.
[52] Lavialle M,Champeil-Potokar G,Alessandri J M,et al.An(n-3)polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity,melatonin rhythm,and striatal dopamine in Syrian hamsters[J].J Nutr,2008,138(9):1719-1724.
[53] Shioda N,Yamamoto Y,Owada Y,et al.Dopamine D2 receptor as a novel target molecule for heart-type fatty acid binding protein[J].Nihon Shinkei Seishin Yakurigaku Zasshi,2011,31(3):125-130.
[54] Carey A N,Fisher D R,Joseph J A,et al.The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells[J].Nutr Neurosci,2013,16(1):13-20.
[55] Shin S S,Dixon C E.Oral fish oil restores striatal dopamine release after traumatic brain injury[J].Neurosci Lett,2011,496(3):168-171.
[56] Narendran R,Frankle W G,Mason N S,et al.Improved working memory but no effect on striatal vesicular monoamine transporter type 2 after omega-3 polyunsaturated fatty acid supplementation[J].PLoS One,2012,7(10):e46832.
[57] Avraham Y,Saidian M,Burston J J,et al.Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals[J].J Nutr Biochem,2011,22(8):766-776.
[58] Baumgartner J,Smuts C M,Malan L,et al.In male rats with concurrent iron and(n-3)fatty acid deficiency,provision of either iron or(n-3)fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency[J].J Nutr,2012,142(8):1472-1478.
[59] Sublette M E,Galfalvy H C,Hibbeln J R,et al.Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder[J].Int J Neuropsychopharmacol,2014,17(3):383-391.
[60] Jiang L H,Liang Q Y,Shi Y.Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice[J].Eur Rev Med Pharmaco,2012,16(13):1765-1773.
[61] Bondi C O,Taha A Y,Tock J L,et al.Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency[J].Biol Psychiat,2014,75(1):38-46.
[62] Tanriover G,Seval-Celik Y,Ozsoy O,et al.The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease[J].Folia Histochem Cytobiol,2010,48(3):434-441.
[63] Cardoso H D,Dos Santos Junior E F,De Santana D F,et al.Omega-3 deficiency and neurodegeneration in the substantia nigra:involvement of increased nitric oxide production and reduced BDNF expression[J].Bba-Biomembranes,2014,1840(6):1902-1912.
[64] Chang Y L,Chen S J,Kao C L,et al.Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology[J].Cell Transplant,2012,21(1):313-332.
[65] Bloch M H,Qawasmi A.Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology:systematic review and meta-analysis[J].J Am Acad Child Psy,2011,50(10):991-1000.
[66] Balanza-Martinez V,Fries G R,Colpo G D,et al.Therapeutic use of omega-3 fatty acids in bipolar disorder[J].Expert Rev Neurother,2011,11(7):1029-1047.
[67] Buydens-Branchey L,Branchey M,Hibbeln J R.Higher n-3 fatty acids are associated with more intense fenfluramine-induced ACTH and cortisol responses among cocaine-abusing men[J].Psychiat Res,2011,188(3):422-427.
[68] Mcnamara R K,Able J,Liu Y,et al.Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats:dissociation from estrogenic effects[J].J Psychiatr Res,2009,43(6):656-663.
[69] Vines A,Delattre A M,Lima M M,et al.The role of 5-HT1Areceptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex:a possible antidepressant mechanism[J].Neuropharmacology,2012,62(1):184-191.
[70] Vancassel S,Leman S,Hanonick L,et al.n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice[J].J Lipid Res,2008,49(2):340-348.
[71] Haider S,Batool Z,Tabassum S,et al.Effects of walnuts(Juglans regia)on learning and memory functions[J].Plant Food Hum Nutr,2011,66(4):335-340.
(2015-12-10 收稿)
*国家自然科学基金资助项目(No.31271855);国家自然科学基金青年科学基金资助项目(No.31000772);湖北省自然科学基金资助项目(No.2014CFB887,No.2015CFC841),湖北省教育厅科学技术研究项目(No.D20141705)
R344.1
10.3870/j.issn.1672-0741.2016.06.023
刘志国,男,1963年生,教授,理学博士,E-mail:zhiguo_l@126.com
△通讯作者,Corresponding author,E-mail:liulieju@qq.com