免疫机制及基因多态性在糖尿病视网膜病变中作用的研究进展
2016-02-18郑坤坤综述易湘龙审校
郑坤坤 综述 易湘龙 审校
(新疆医科大学第一附属医院眼科, 乌鲁木齐 830054)
免疫机制及基因多态性在糖尿病视网膜病变中作用的研究进展
郑坤坤综述易湘龙审校
(新疆医科大学第一附属医院眼科, 乌鲁木齐830054)
糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病最常见的微血管并发症,DR的发病率和致盲率逐年增加,严重影响患者生存质量。DR病因复杂,发病机制并未完全明确,越来越多的研究表明,DR是一种多因素协同作用的疾病,DR的免疫机制及基因多态性机制越来越受到重视。
免疫; 基因多态性; 糖尿病视网膜病变
糖尿病的全球发病人数不断增加,据国际糖尿病联盟(IDF)统计:2015年全世界已有约4.15亿成年人患有糖尿病,每11个成年人中便有1人患有糖尿病[1]。2002年调查我国糖尿病患病率约3.2%,2010我国成人糖尿病患病率约为9.7%,已经成为世界上糖尿病患者最多的国家[2]。Ruta等[3]根据33个国家的72篇文献研究发现在已诊断的2型糖尿病患者中视网膜病变率为10%~61%,中间患病率约27.9%。DR的发病与糖尿病病程、血糖水平、血压、血脂等公认的危险因素相关,但不能完全解释其发生发展,研究发现免疫学机制及基因多态性的机制在DR发病中起重要作用,现将DR的免疫机制和相关基因多态性研究进展综述如下。
1 DR免疫机制的研究现状
较多证据表明DR是一种慢性免疫异常性疾病,表现为低度炎症与炎症介质的参与[4],是黏附分子、细胞因子、趋化因子、前列腺素等因子和巨噬细胞、中性粒细胞等炎性细胞参与的复杂的链事件[5];导致视网膜血管渗透性增加、渗出及新生血管形成等病理改变;以下将对胞间黏附分子-1(ICAM)) 、白细胞介素(IL)、肿瘤坏死因子-α(TNF)等免疫因子在DR中的免疫机制进行综述。
1.1ICAM-1是免疫球蛋白超家族之一,ICAM-1分子主要表达于内皮细胞、上皮细胞及淋巴细胞等表面,血管内皮细胞表达最强,可介导抗原提呈细胞与T细胞、T细胞与靶细胞黏附及细胞内外的信号转导,在免疫和反应中起重要作用。ICAM-1在活化内皮细胞上表达对介导循环白细胞黏附到血管壁和跨内皮迁移到血管内膜中起到重要作用,是局部组织损伤和炎症反应的关键。视网膜表达ICAM-1的增加被认为在白细胞停滞介导的血-视网膜屏障破坏、毛细血管闭塞和糖尿病视网膜病变中起关键作用[6]。DR患者结膜细胞及糖尿病大鼠血管内皮细胞表达ICAM-1均增多[7-8],并且大鼠实验发现血管内皮细胞缺血时白细胞会黏附及活化,此时ICAM-1可表达上调[9];Nicholson等[10]通过对灵长类动物实验显示,如果对其玻璃体进行注射血管内皮生长因子(VEGF),灵长类动物会出现类似DR的病理表现,还发现血清ICAM-1含量有不同程度的上升,而在注射VEGFR的溶解蛋白后,ICAM-1的含量出现明显下降,可见ICAM-1与VEGF在DR中起协同作用。在视网膜,VEGF主要表达于穆勒细胞及血管内皮细胞,在糖尿病小鼠视网膜穆勒细胞VEGF基因被敲除后,TNF-α、ICAM-1和核转录因子kappa(NF-κB)的表达明显降低,白细胞停滞减轻[11]。在人视网膜毛细血管内皮细胞受到TNF-β、IL-1、粒细胞-巨噬细胞集落刺激因子(GM-CSF)等刺激因子诱导时ICAM-1表达可显著提高,在增殖期糖尿病性视网膜病变(PDR)患者血清中ICAM-1的溶解形式-可溶性细胞间黏附分子1(sICAM-1)随玻璃体IL-6、TNF-α浓度的升高而增高[12];并且在DR早期VEGF表达上调也可以促使ICAM-1表达增加,并且促使白细胞在视网膜黏附停滞[13]。Ugurlu等[14]研究认为ICAM-1能够调控早期DR的进展。因为白细胞黏附于血管内皮细胞是DR免疫反应的发展的关键事件,因此调控ICAM的表达或用单克隆抗体、白细胞抗体等抑制白细胞的黏附可以为DR治疗提供新的可能性。
1.2TNF-αTNF-α是一种由巨噬细胞及激活的B、T淋巴细胞等多种细胞分泌的细胞因子。DR患者有一个免疫-炎症活动增加的过程,可表现为血清、玻璃体内TNF-α水平升高[15];也有调查显示在PDR患者泪液中其水平升高[16]。TNF-α引起DR可能有以下几种机制:(1) 与多种IL协同引起血管通透性增加损伤血-视网膜屏障[17];(2)提高靶细胞对VEGF的反应性,并促进VEGF、血小板源性生长因子(PDGF)等生成释放并协同促进增殖作用;(3)启动细胞凋亡效应,促进细胞凋亡[18],从而在PDR的发病的免疫途径中起重要作用[19];(4)转变ICAM-1表达的形式,与ICAM-1协同增强视网膜局部炎症反应。Adamiec-Mroczek等[20]检测出增殖期糖尿病视网膜病变患者ICAM-1、TNF-α、IL-6水平明显增高,显示DR患者存在免疫系统的亢进,TNF-α含量也随着疾病进展呈现出明显上升趋势。Gustavsson等[21]研究认为,TNF-α可作为PDR患者的一个独立的血清检查标志物。Joussen等[22]采用大剂量非甾体类药物如阿司匹林、美洛昔康非甾体类抗炎药物,均可减低视网膜TNF-α水平及ICAM-1的表达;此外对另一种非甾体类药物双氯芬酸注射液的随机双盲临床试验表明,对于轻度糖尿病性黄斑水肿,玻璃体腔注射IVD的治疗效果优于贝伐珠单抗注射(IVB)[23]。白藜芦醇是一种天然多酚,主要来源于花生和红葡萄酒,通过减缓心血管系统的氧化应激保护心血管[24];最近的一项关于2型糖尿病大鼠研究表明,白藜芦醇抑制NF-κB和TNF-α的活化并减少视网膜细胞凋亡[25]。
1.3IL白细胞介素是一种可经淋巴细胞诱导生成并具有复杂生物学作用的细胞因子,多种白细胞介素参与DR的发生、发展, IL-1α、IL-1β、IL-6、TNF-α可直接诱导新生血管生成与间接通过白细胞成或促使内皮细胞产生促血管生成介质诱导新生血管生[26-27]。Takeuchi等[28]发现PDR患者玻璃体内IL-4、IL-6、IL-17A、IL-21、IL-22及TNF-α的水平明显高于血清;IL-23主要作用于记忆T淋巴细胞,具有影响免疫反应的作用[29]。多种细胞因子可以协同作用,如IL-1b可以和TNF-α协同促使视网膜增殖和收缩[30],局部应用浓度为0.45%酮咯酸氨丁三醇,可以显著降低玻璃体IL-8水平而抑制DR的发病[31]。
1.4 其他与DR病变相关免疫因素糖尿病视网膜病变的免疫学机制包含多种因素;从基因层面、细胞因子、细胞及组织器官层面都有免疫异常。有研究认为DR是血管病变和慢性神经炎性反应性疾病[32],因此应用色素上皮细胞生长因子、促生长素抑制素、神经营养因子也可作为DR的替代疗法[33]。朱燕妮等[34]研究也发现DR患者较健康体检者普遍存在维生素D水平低下,并进一步观察给予小剂量活性维生素D治疗,不仅可改善其免疫及代谢紊乱,同时还可以减轻DR程度,延缓DR的进展,治疗过程安全;Yi等[35]研究发现1,25(OH)2D3可以显著抑制外周血单个核细胞增殖及释放TNF-a、IL-6、IL-17A,是DR发展的保护性因子。ω-3多不饱和脂肪酸(DHA)是目前公认有效的抑制小胶质细胞促炎活化免疫调节物[36],是神经保护素D1的前体,在视网膜高度富集,能够保持感光细胞和视网膜色素上皮细胞的存活率[37]。在糖尿病大鼠模型中,局部注射IL-23Rp19抗体可以改善血-视网膜屏障的结构,提供了治疗的可能性[38]。在野生型小鼠糖尿病模型中发现中性粒细胞抑制因子(NIF)通过拮抗的CD11b抑制初期糖尿病性视网膜病变[39]。孟春梅等[40]实验结果显示,DR大鼠视网膜上有大量IgA、IgG和IgM沉积,与对照组形成非常明显的反差。在趋化因子配体2(CCL2)敲除小鼠中,出现明显视网膜血管渗漏及单核细胞浸润[41]。
2 DR相关基因多态性的研究现状
随着基因学方法及多聚酶链反应等技术的发展及应用,基因多态性与DR关系的研究不断深入,多种基因多态性已经被证实为DR发生的独立危险因素,迄今已筛选出了多种DR的候选基因。基因多态性与环境因素相互作用影响着DR,且基因多态性存在着较大的种族差异;新的治疗策略如基因移植等方法正在发展,继早期在遗传性视网膜病变基因治疗成功之后,视网膜血管性疾病的基因治疗,如DR正在被研究中[42]。
2.1VEGF基因多态性VEGF基因是DR候选基因研究中被发现相关及单核苷酸(SNP)多态性最多的一个基因。目前已发现有3O多种单核苷酸多态性VEGF基因[43],VEGF基因多态性与DR具有相关性[44]。近来有研究发现VEGF基因多态性对抗VEGF治疗产生一定的影响[45]。不同人群中与DR相关的基因多态性位点可能不一样,如rs17697419、rs17697515与英国及澳大利亚白人DR相关[46],rs2010963位点与印度人DR相关[47];rs6128位点与美国人DR相关[48]。Churchill等[49]对位于启动子区及5′非编码区的9个SNPs和内含子区的5个SNP进行研究发现,-160C/T、-152A/G及-116A/G3个位点(位于启动子区)及其组成的单倍体与PDR呈强相关。较多研究表明,不同基因位点多态性在不同人群中与DR相关性不尽一致。
2.2维生素D受体基因多态性维生素D的主要活性形式1,25-(OH)2D3具有免疫调节作用,维生素D3通过与维生素D受体(vitamin D receptor,VDR)结合介导与靶基因特异性的核苷酸序列相互作用[50]。缺乏活性维生素D可以使内皮细胞表达的下游促炎细胞因子IL-6表达增加,且与维生素D含量呈反比[51]。较多研究表明,维生素D受体FoI、BsmI、TaqI、ApaI等位基因多态性与糖尿病视网膜病变密切相关[52-53];2015年在汉族人群中一项研究显示VDR的f基因可能是中国汉族糖尿病患者易于发生DR 的危险遗传性标志[54]。VDR基因多态性存在着较大的种族差异,故在不同人群中不同多态性位点与DR的相关性也不尽相同。
2.3醛糖还原酶(AR)基因编码AR的ALR2基因定位于人类染色体7q35上,醛糖还原酶是限速多元醇途径的酶,催化由烟酰胺腺嘌呤二核苷磷酸(NADPH)介导的葡萄糖向山梨醇转化,增加AR表达在糖尿病微血管并发症中起重要作用[55]。已经有许多研究评估多态性在AKR1B1基因和DR易感性,以(AC)n二核苷酸微卫星多态性和rs759853最常见的研究。 Katakami等[56]研究认为C-106T为日本2型糖尿病视网膜病变患者的易感基因。AR基因的-106CC基因型能增加巴西高加索人2型糖尿病PDR的风险。2010年Abhary等[57]研究发现AR基因单核苷酸多态性中rs9640883 与DR有很高的关联性,而且和DR的病程密切相关。AR抑制剂(ARI)可以有效地抑制多元醇代谢通路中的关键限速酶-AR活性,阻止或延缓DR的发生。
DR与免疫及遗传因素关系密切,深入研究将将有助于探索DR发病机制,对DR的预防、诊断及治疗有重要意义。
[1]IDF Diabetes Atlas.6th ed.Brussels B. International Diabetes Federation. http://www.idf.org/diabetesatla.
[2]中国2型糖尿病防治指南(2010年版)[J]. 中国糖尿病杂志, 2012,20(1):1-36.
[3]Ruta LM, Magliano DJ, Lemesurier R, et al. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries[J]. Diabet Med, 2013,30(4):387-398.
[4]Adamis AP. Is diabetic retinopathy an inflammatory disease[J]. Br J Ophthalmol, 2002,86(4):363-365.
[5]Ascaso FJ, Huerva V, Grzybowski A. The role of inflammation in the pathogenesis of macular edema secondary to retinal vascular diseases[J]. Mediators Inflamm, 2014,37(3):432-441.
[6]Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004,18(12):1450-1452.
[7]Khalfaoui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes[J]. J Mol Histol, 2008,39(2):243-249.
[8]Zhu Y, Zhang XL, Zhu BF, et al. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats[J]. Mol Biol Rep, 2012,39(4):3727-3735.
[9]Bucolo C, Leggio GM, Drago F, et al. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats[J]. Biochem Pharmacol, 2012,84(1):88-92.
[10]Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2010,248(7):915-930.
[11]Wang J, Xu X, Elliott MH, et al. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010,59(9):2297-2305.
[12]Adamiec-Mroczek J, Oficjalska-Mlynczak J. Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes--role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2008,246(12):1665-1670.
[13]Joussen AM, Poulaki V, Qin W, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo[J]. Am J Pathol, 2002,160(2):501-509.
[14]Ugurlu N, Gerceker S, Yulek F, et al. The levels of the circulating cellular adhesion molecules ICAM-1, VCAM-1 and endothelin-1 and the flow-mediated vasodilatation values in patients with type 1 diabetes mellitus with early-stage diabetic retinopathy[J]. Intern Med,2013,52(19):2173-2178.
[15]Gustavsson C, Agardh CD, Agardh E. Profile of intraocular tumour necrosis factor-alpha and interleukin-6 in diabetic subjects with different degrees of diabetic retinopathy[J]. Acta Ophthalmol, 2013,91(5):445-452.
[16]Costagliola C, Romano V, De Tollis M, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy[J]. Mediators Inflamm, 2013,9(6):245-249.
[17]Aveleira CA, Lin CM, Abcouwer SF, et al. TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability[J]. Diabetes, 2010,59(11):2872-2882.
[18]Huang H, Gandhi JK, Zhong X, et al. TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis[J]. Invest Ophthalmol Vis Sci, 2011,52(3):1336-1344.
[19]Fang M, Meng Q, Guo H, et al. Programmed Death 1 (PD-1) is involved in the development of proliferative diabetic retinopathy by mediating activation-induced apoptosis[J]. Mol Vis, 2015,21:901-910.
[20]Adamiec-Mroczek J, Oficjalska-Mlynczak J. Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes--role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2008,246(12):1665-1670.
[21]Gustavsson C, Agardh E, Bengtsson B, et al. TNF-alpha is an independent serum marker for proliferative retinopathy in type 1 diabetic patients[J]. J Diabetes Complications, 2008,22(5):309-316.
[22]Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression[J]. FASEB J, 2002,16(3):438-440.
[23]Soheilian M, Karimi S, Ramezani A, et al. Intravitreal diclofenac versus intravitreal bevacizumab in naive diabetic macular edema: a randomized double-masked clinical trial[J]. Int Ophthalmol, 2015,35(3):421-428.
[24]Kumar A, Kaundal RK, Iyer S, et al. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy[J]. Life Sci, 2007,80(13):1236-1244.
[25]Ghadiri SF, Arbabi-Aval E, Rezaei KM, et al. Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats[J]. Clin Exp Pharmacol Physiol, 2015,42(1):63-68.
[26]Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis[J]. Proc Natl Acad Sci U S A, 2003,100(5):2645-2650.
[27]Naldini A, Leali D, Pucci A, et al. Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes[J]. J Immunol, 2006,177(7):4267-4270.
[28]Takeuchi M, Sato T, Tanaka A, et al. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients[J]. PLoS One, 2015,10(9):137-144.
[29]Kikly K, Liu L, Na S, et al. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation[J]. Curr Opin Immunol, 2006,18(6):670-675.
[30]Demircan N, Safran BG, Soylu M, et al. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy[J]. Eye (Lond), 2006,20(12):1366-1369.
[31]Schoenberger SD, Kim SJ, Shah R, et al. Reduction of interleukin 8 and platelet-derived growth factor levels by topical ketorolac, 0.45%, in patients with diabetic retinopathy[J]. JAMA Ophthalmol, 2014,132(1):32-37.
[32]Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy[J]. J Neuroinflammation, 2015,12(10):141-148.
[33]Simo R, Hernandez C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence[J]. Prog Retin Eye Res, 2015,48:160-180.
[34]朱燕妮, 卢娟, 陈静, 等. 活性维生素D治疗非增殖型糖尿病视网膜病变的疗效[J]. 国际眼科杂志, 2013,13(1):104-106.
[35]Yi X, Sun J, Li L, et al. 1,25-Dihydroxyvitamin D3 Deficiency is Involved in the Pathogenesis of Diabetic Retinopathy in the Uygur Population of China[J]. IUBMB Life, 2016,68(6):445-451.
[36]Antonietta AM, Lavinia SM, De Simone R, et al. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells[J]. J Neurosci Res, 2012,90(3):575-587.
[37]Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1[J]. J Lipid Res, 2010,51(8):2018-2031.
[38]Xu H, Cai M, Zhang X. Effect of the blockade of the IL-23-Th17-IL-17A pathway on streptozotocin-induced diabetic retinopathy in rats[J]. Graefes Arch Clin Exp Ophthalmol, 2015,253(9):1485-1492.
[39]Veenstra AA, Tang J, Kern TS. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy[J]. PLoS One, 2013,8(10):235-247.
[40]孟春梅, 高桦, 邱明才, 等. 链脲佐菌素诱导的糖尿病大鼠视网膜的免疫损伤[J]. 中华内分泌代谢杂志, 2006,22(6):588-589.
[41]Rangasamy S, McGuire PG, Franco NC, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J]. PLoS One, 2014,9(10):1-10.
[42]Thompson DA, Ali RR, Banin E, et al. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium[J]. Invest Ophthalmol Vis Sci, 2015,56(2):918-931.
[43]Jain L, Vargo CA, Danesi R, et al. The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors[J]. Mol Cancer Ther, 2009,8(9):2496-508.
[44]Nakamura S, Iwasaki N, Funatsu H, et al. Impact of variants in the VEGF gene on progression of proliferative diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2009,247(1):21-26.
[45]El-Shazly SF, El-Bradey MH, Tameesh MK. Vascular endothelial growth factor gene polymorphism prevalence in patients with diabetic macular oedema and its correlation with anti-vascular endothelial growth factor treatment outcomes[J]. Clin Experiment Ophthalmol, 2014,42(4):369-378.
[46]Abhary S, Burdon KP, Gupta A, et al. Common sequence variation in the VEGFA gene predicts risk of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2009,50(12):5552-5558.
[47]Choudhuri S, Chowdhury IH, Das S, et al. Role of NF-kappaB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy[J]. Mol Cell Biochem, 2015,405(1-2):265-279.
[48]Sobrin L, Green T, Sim X, et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe)[J]. Invest Ophthalmol Vis Sci, 2011,52(10):7593-7602.
[49]Churchill AJ, Carter JG, Ramsden C, et al. VEGF polymorphisms are associated with severity of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2008,49(8):3611-3616.
[50]朱钊, 韩睿. 维生素D及其受体基因与糖尿病视网膜病变的关系[J]. 中华糖尿病杂志, 2011,3(6):493-496.
[51]Jablonski KL, Chonchol M, Pierce GL, et al. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults[J]. Hypertension, 2011,57(1):63-69.
[52]Zhang H, Wang J, Yi B, et al. BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population[J]. Gene, 2012,495(2):183-188.
[53]Wang G, Zhang Q, Xu N, et al. Associations between two polymorphisms (FokI and BsmI) of vitamin D receptor gene and type 1 diabetes mellitus in Asian population: a meta-analysis[J]. PLoS One, 2014,9(3):1-21.
[54]侯丽君, 黄东辉, 韩静静. 维生素D受体基因FokI多态性与糖尿病视网膜病变的相关性研究[J]. 泰山医学院学报, 2015,(5):490-493.
[55]Nishimura C, Saito T, Ito T, et al. High levels of erythrocyte aldose reductase and diabetic retinopathy in NIDDM patients[J]. Diabetologia, 1994,37(3):328-330.
[56]Katakami N, Kaneto H, Takahara M, et al. Aldose reductase C-106T gene polymorphism is associated with diabetic retinopathy in Japanese patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2011,92(3):57-60.
[57]Abhary S, Burdon KP, Laurie KJ, et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility[J]. Diabetes Care, 2010,33(8):1834-1836.
(本文编辑张巧莲)
国家自然科学基金(81260150,81560161); 国家教育部高等学校博士学科点专项科研基金新教师类(20126517120004); 中国博士后科学基金面上资助项目(2014M562485); 新疆医科大学第一附属医院青年科研基金(2012QN08)
郑坤坤(1990-),男,在读硕士,研究方向:眼底病诊断与治疗。
易湘龙,男,主任医师,副教授,硕士生导师,研究方向:眼底病近视矫正及角膜移植,E-mail: xly1010@sina.com。
R77; R392.12
A
1009-5551(2016)09-1098-05
10.3969/j.issn.1009-5551.2016.09.005
2016-03-16]