NMDA受体亚单位NR2D与MOCA相互作用的鉴定*
2016-01-31李小曼
白 宁, 羿 菲, 刘 汀, 李小曼
(教育部细胞生物学重点实验室,中国医科大学转化医学研究院,辽宁 沈阳 110122)
NMDA受体亚单位NR2D与MOCA相互作用的鉴定*
白宁,羿菲,刘汀,李小曼△
(教育部细胞生物学重点实验室,中国医科大学转化医学研究院,辽宁 沈阳 110122)
[摘要]目的: 寻找N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体亚单位NR2D的结合蛋白,为探讨NR2D在视网膜兴奋性毒性损伤中的作用提供依据。方法: 构建了包含NR2D细胞内C末端的cDNA片段为诱饵质粒,应用酵母双杂交技术筛选小鼠脑cDNA文库,并用免疫共沉淀实验进一步验证NR2D与其结合蛋白之间的相互作用,免疫荧光显微镜观察NR2D和目的蛋白在视网膜中的共表达。结果: 酵母双杂交筛选到细胞黏附修饰因子(modifier of cell adhesion,MOCA)为NR2D可能的相互作用蛋白,两者在视网膜有共定位。结论: MOCA能特异结合谷氨酸受体NR2D,这为进一步研究谷氨酸的兴奋性毒性参与视网膜退行性变的机制奠定了实验基础。
[关键词]NR2D NMDA受体; 细胞黏附修饰因子; 酵母双杂交技术; 蛋白相互作用
谷氨酸(glutamate,Glu)是中枢神经系统中重要的兴奋性神经递质,谷氨酸受体可分为促离子型谷氨酸受体(ionotropic glutamate receptor, iGluR)和促代谢型谷氨酸受体(metabotropic glutamate receptor, mGluR),在中枢神经系统中分布广泛,与突触可塑性、学习和记忆、谷氨酸的兴奋性毒性、缺血性脑卒中、创伤性颅脑损伤及神经退行性疾病密切相关[1-4]。N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体属于促离子型谷氨酸受体的一种,包括必需的亚单位NR1、NR2亚单位家族(NR2A~D)和2种NR3亚单位(NR3A~B)[5]。在某些应激条件下,如视网膜缺氧缺血,谷氨酸会大量释放,过度激活NMDA受体,从而引起钙离子过度内流导致神经元损伤[6]。NR2亚单位是NMDA受体功能和特性的主要决定因素,由于NR2A和NR2B广泛分布于大脑皮层区域,因此目前大多数的研究主要集中在包含NR2A/2B的NMDA受体。然而,从离子通道的特性来看,包含NR2D亚单位的NMDA受体具有电阻低、通道开放缓慢、对激动剂谷氨酸亲和力高和不敏感的镁离子电压依赖性封闭等特点[7],说明此受体通道易被激活、通道开放时间长,并伴有大量的钙离子内流,从而引起兴奋性毒性损伤。本研究旨在应用酵母双杂交技术和免疫共沉淀的方法筛选可能与NR2D相互作用的新蛋白,为阐明NR2D在视网膜兴奋性毒性损伤中的作用及其分子机制提供新的理论依据。
材料和方法
1材料
酵母双杂交系统(Matchmaker®Gold Yeast Two-Hybrid System)购自Clontech,包括酵母菌株Y2HGold和Y187、质粒pGBKT7和pGADT7、阳性对照和阴性对照质粒;小鼠胎脑cDNA文库、重组质粒克隆应用试剂盒In-Fusion®Advantage PCR Cloning Kit、pEGFP C1 和抗GFP抗体均购自Clontech;大肠杆菌DH5α和pEF1/myc-His A购自Invitrogen;大肠杆菌质粒提取试剂盒购自Qiagen;pSP-NR2D cDNA、NR2D抗体和MOCA抗体由本室保存; 抗c-Myc抗体购自MBL;抗Brn3抗体购自Santa Cruz;转染试剂GeneJuice购自Novagen。
2酵母双杂交
以pSP-NR2D cDNA为模板, PCR扩增包含编码NR2D 细胞内C末端的cDNA片段(895~1323aa)插入pGBKT7载体中获得诱饵质粒pGBKT7-NR2D CT,并经DNA序列测定证实序列无误。按照Clontech酵母双杂交系统说明,诱饵质粒转化Y2HGold酵母菌,筛选小鼠胎脑cDNA文库。同时进行诱饵蛋白自激活和毒性检测,设立阳性对照和阴性对照实验及文库滴定。将已转化诱饵质粒的酵母菌转化子铺皿于营养缺乏性培养基SD/-Trp(缺色氨酸,SDO)、SD/-Trp/X-α-Gal(缺色氨酸并表达X-α-半乳糖苷酶,SDO/X)、SD/-Trp/X-α-Gal/aureobasidin A(缺色氨酸并表达X-α-半乳糖苷酶和抗真菌抗生素筛选,SDO/X/A)。若诱饵蛋白无自激活,则只能在SDO和SDO/X培养基上生长,不能在SDO/X/A培养基上生长,并且β-半乳糖苷酶活性检测呈阴性。同时将质粒pGBKT7-53和pGADT7-T共转化入Y2HGold细胞作为阳性对照,铺皿于SD/-Trp/-Leu/X-α-Gal/aureobasidin A(缺色氨酸、亮氨酸,并表达X-α-半乳糖苷酶和抗真菌抗生素筛选,DDO/X/A)培养基上,由于已知P53蛋白和T抗原有互作可以激活报告基因,因此转化子可以在DDO/X/A培养基上生长,并可使底物X-α-Gal变蓝。观察含有诱饵质粒和空质粒pGBKT7的转化子在SDO培养基上的生长,比较克隆大小,以判断诱饵是否有毒性而导致酵母菌生长缓慢。按照Clontech酵母双杂交系统说明,2缺培养基(缺色氨酸、亮氨酸,DDO)、X-α-Gal、aureobasidin A筛选,阳性克隆转4缺培养基(缺腺嘌呤、组氨酸、色氨酸、亮氨酸,QDO),结合X-α-半乳糖苷酶和抗真菌抗生素继续筛选,能在营养缺乏培养基上生长且为蓝色的菌落方为阳性克隆。随机挑取部分阳性克隆,抽提质粒送测序,并在网上数据库进行同源性比对序列以确定候选基因。
3免疫共沉淀实验
HEK293T细胞接种于10 cm培养皿,置于含有10%胎牛血清的DMEM培养基中(Sigma),于5% CO2、37 ℃培养。当细胞融合率达到70%时,按照GeneJuice使用说明将质粒转染细胞。NR2D C末端(895~1323 aa)插入pEGFP C1载体中(pEGFP C1-NR2D CT),从酵母双杂交筛选出的细胞黏附修饰因子(modifier of cell adhesion,MOCA)的结合片段(selected interacting domain,SID)插入pEF1/myc-His A载体(pEF1/myc-His A-MOCA)。转染48 h后收集细胞,冰浴RIPA裂解液(50 mmol/L Tris-HCl,1% Nonidet P-40,5 mmol/L EDTA,150 mmol/L NaCl,0.5% Na-deoxycholate,1 mmol/L PMSF, Complete Protease Inhibitor Cocktail)裂解细胞。高速离心后取上清,根据说明加入适量anti-Myc和anti-GFP的磁性琼脂糖珠(MBL)进行免疫共沉淀实验。将蛋白裂解物及免疫沉淀复合物用上样缓冲液加热变性,进行Western blot分析。
4免疫荧光染色观察共定位
实验中应用的小鼠品系为C57BL/6J,将生后5周的小鼠乙醚麻醉后用4% 多聚甲醛(paraformaldehyde, PFA)灌流,摘除眼球置于相同的固定液中4 ℃固定2 h,然后放入30%蔗糖溶液中4 ℃过夜,用冰冻切片包埋剂optimal cutting temperature compound (OCT)包埋,冰冻切片机制备10 μm的视网膜切片。以Brn3抗体(1∶100)标记视网膜神经节细胞(retinal ganglion cells,RGCs),NR2D抗体(1∶50)和MOCA抗体(1∶100)检测两者在视网膜的共定位,再以相应荧光 II 抗(Alexa Fluro 488和Alexa Fluro 568,购自Invitrogen)孵育,封片,荧光显微镜下观察。
结果
1酵母双杂交筛选提示MOCA为NR2D可能的相互作用蛋白
我们构建了诱饵质粒pGBKT7-NR2D CT,转化酵母菌Y2HGold,Western blot分析可见c-Myc标记的融合蛋白NR2D-Myc-BD在酵母中正确表达,大小约62 kD,阳性对照p53-Myc-BD蛋白约57 kD(图1)。同时,我们也检测了诱饵蛋白是否具有自激活活性,将诱饵质粒的酵母菌转化子铺皿于营养缺乏的培养基SDO、SDO/X和SDO/X/A,观察生长状况,诱饵蛋白没有自激活活性,只能在SDO和SDO/X培养基上生长,不能在SDO/X/A培养基上生长,并且β-半乳糖苷酶活性检测呈阴性(结果未显示)。在诱饵蛋白的毒性检测中,我们观察了含有诱饵质粒和空质粒的转化子在SD/-Trp培养基上的生长状态,酵母克隆的大小相似,克隆的数量二者无显著差异,说明诱饵蛋白对酵母生长无毒性作用。用过夜培养的酵母菌Y2HGold/pGBKT7-NR2D CT与酵母菌Y187/小鼠胎脑cDNA文库进行杂交,从筛选到的阳性克隆中我们随机选取6个克隆进行测序分析,在GenBank中进行同源性比对分析,结果见表1。其中有2个克隆是编码Dock同源区域2(dock homology region 2, DHR-2)结构域的MOCA。它们的结合部位位于MOCA的DHR-2结合域附近,在796~1 154氨基酸内。
Figure 1.Expression of NR2D-Myc-BD fusion protein in yeast. Western blot analysis of yeast protein extracts with c-Myc antibody.
图1NR2D-Myc-BD融合蛋白在酵母菌中的表达
2NR2D和MOCA可在哺乳动物细胞内相互作用
为了研究NR2D和MOCA在哺乳动物细胞系中是否有相互作用,将pEGFP C1-NR2D CT和pEF1/myc-His A-MOCA质粒共转染HEK293T细胞,anti-GFP和anti-Myc的磁性琼脂糖珠纯化NR2D和MOCA,用Myc和GFP抗体进行Western blot分析。结果显示用Myc抗体检测anti-GFP的免疫沉淀物可见MOCA SID能与NR2D CT结合,Myc不与NR2D CT结合作为阴性对照。反之,用GFP抗体检测anti-Myc的免疫沉淀物可见NR2D CT能与MOCA结合,GFP不与MOCA结合作为阴性对照,见图2。
Figure 2.Identification of MOCA as an NR2D-interacting protein. HEK293T cells were transfected with plasmids encoding the SID of MOCA (Myc-MOCA SID) and EGFP-tagged NR2D C-terminus (EGFP-NR2D CT). The lysates of transfected cells were immunoprecipitated (IP) with anti-GFP or anti-Myc antibody. Immune complexes were detected by immunoblotting (IB) with anti-Myc or anti-GFP antibody. Total cell lysates used for immunoprecipitation were loaded as input samples. Data are from a single experiment, which is representative of 3 experiments that yielded similar results.
图2MOCA和NR2D的免疫共沉淀实验
3NR2D和MOCA在小鼠视网膜中共定位
由于谷氨酸的兴奋性毒性同青光眼RGCs的退行性变有关,因此我们检测MOCA和NR2D在小鼠视网膜组织中的表达模式。首先应用Brn3(RGCs的标志物)抗体和NR2D特异性抗体,荧光显微镜下观察可见Brn3显示绿色荧光,特异性地表达在视网膜神经节细胞层(ganglion cell layer,GCL),NR2D显示红色荧光,也表达在GCL,图片叠加显示NR2D表达于Brn3阳性的RGC中。我们应用MOCA抗体检测到MOCA也表达于GCL,同时用NR2D抗体标记显示MOCA和NR2D在视网膜的GCL中共定位,见图3。
Figure 3.NR2D and MOCA both located in the mouse retina. Double-labeling experiments were carried out on mouse retina sections. NR2D (red) was expressed in Brn3-positive cells (green, a marker for RGC). NR2D was green and MOCA was red. MOCA co-located with NR2D in RGCs, as shown in the overlay panel. The scale bar=50 μm. GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer. Data are from a single experiment, which is representative of 3 experiments that yielded similar results.
图3MOCA和NR2D共定位在小鼠视网膜神经节细胞
讨论
NMDA受体是中枢神经系统中最重要的谷氨酸受体之一,过度激活NMDA受体导致神经元损伤直至死亡可产生兴奋性毒性,这一过程参与了许多眼部疾病的视网膜损伤,如青光眼RGC的死亡。鉴于NR2D亚单位的通道特性及其在视网膜中的丰富表达,我们首先关注这一亚单位,通过酵母双杂交技术筛选了小鼠脑cDNA文库,发现NR2D可结合多种蛋白,其中MOCA是NR2D在胞浆中新的互作分子,它们的结合部位位于MOCA的DHR-2结合域附近,后续通过免疫共沉淀分析也证实了MOCA能够特异性地结合NR2D。
MOCA属于新型鸟嘌呤核苷酸交换因子(guanine nucleotide exchange factor,GEF)家族成员,有助于小G蛋白上的GDP和GTP相互转换,能特异性地活化Ras和Rho等小G蛋白[8]。MOCA最早是作为早老素结合蛋白(presenilin-binding protein,PBP)而被人们所认知的,参与了细胞黏附和神经元轴突的定向生长[9]。MOCA同阿尔茨海默病相关,因为它能够调节Aβ的分泌,在神经纤维缠结中聚集[10-11]。有研究表明,过表达MOCA能够促进损伤后的视神经再生[12],在原代培养的RGC中过表达MOCA能够显著地抑制谷氨酸的兴奋性毒性作用[13],说明MOCA可能具有神经保护作用。结合上述文献报道,本实验中MOCA和NR2D的互作并且共定位于小鼠视网膜组织中,提示MOCA可能通过修饰NR2D或者影响NR2D的表达,从而降低NR2D NMDA受体的兴奋性毒性,起到保护RGC的作用。
[参考文献]
[1]Choi DW. Glutamate neurotoxicity and diseases of the nervous system[J]. Neuron, 1988, 1(8):623-634.
[2]Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death[J]. Annu Rev Neurosci, 1990, 13:171-182.
[3]Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection [J]. Prog Neurobiol, 2014, 115:157-188.
[4]Meldrum B. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders[J]. Brain Res Brain Res Rev, 1993, 18(3):293-314.
[5]彭毓棻,宋治. NMDA受体在癫痫发病机制中的作用[J]. 中国病理生理杂志, 2011, 27(6):1230-1233,1239.
[6]Ferreira IL, Duarte CB, Carvalho AP. Ca2+influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death[J]. Eur J Pharmacol, 1996, 302(1-3):153-162.
[7]Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses[J]. Sci STKE, 2004, 2004(255):re16.
[9]Chen Q, Chen TJ, Letourneau PC, et al. Modifier of cell adhesion regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth[J]. J Neurosci, 2005, 25(2):281-290.
[10]Chen Q, Kimura H, Schubert D. A novel mechanism for the regulation of amyloid precursor protein metabolism[J]. J Cell Biol, 2002, 158(1):79-89.
[11]Chen Q, Yoshida H, Schubert D, et al. Presenilin bin-ding protein is associated with neurofibrillary alterations in Alzheimer’s disease and stimulates tau phosphorylation[J]. Am J Pathol, 2001, 159(5):1597-1602.
[12]Namekata K, Harada C, Guo X, et al. Dock3 stimulates axonal outgrowth via GSK-3β-mediated microtubule assembly[J]. J Neurosci, 2012, 32(1):264-274.
[13]Hayashi H, Eguchi Y, Fukuchi-Nakaishi Y, et al. A potential neuroprotective role of apolipoprotein E-containing lipoproteins through low density lipoprotein receptor-rela-ted protein 1 in normal tension glaucoma[J]. J Biol Chem, 2012, 287(30):25395-25406.
(责任编辑: 林白霜, 罗森)
Interaction of NR2D subunit of NMDA receptor with MOCA
BAI Ning, YI Fei, LIU Ting, LI Xiao-man
(InstituteofTranslationalMedicine,KeyLaboratoryofMedicalCellBiology,MinistryofEducation,ChinaMedicalUniversity,Shenyang110122,China.E-mail:lixm@mail.cmu.edu.cn)
[KEY WORDS]NR2D NMDA receptor; Modifier of cell adhesion; Yeast two-hybrid techniques; Protein interaction
[ABSTRACT]AIM: To identify the potential proteins interacting with NR2D subunit of NMDA receptor by yeast two-hybrid screening and to investigate the role of NR2D in excitotoxicity of the retina.METHODS: The Clontech GAL4 yeast two-hybrid system was used to screen the mouse brain cDNA library, and the bait plasmid containing C-terminus of NR2D was constructed. Physical interaction between 2 proteins was verified by co-immunoprecipitation assay. The subcellular localization of 2 proteins in the mouse retina was observed under microscope with immunofluorescence.RESULTS: Modifier of cell adhesion (MOCA) was identified as a new protein interacting with NR2D. MOCA and NR2D were co-expressed in the mouse retina. CONCLUSION: MOCA specifically interacts with NR2D, which provides the experimental basis for identifying the role of glutamate excitotoxicity in the retina neurodegeneration.
[文章编号]1000- 4718(2016)06- 1118- 04
[收稿日期]2016- 03- 08[修回日期] 2016- 05- 09
*[基金项目]国家自然科学基金资助项目(No. 81300800);辽宁省博士启动基金资助项目(No. 20131141);辽宁省自然科学基金资助项目(No. 2013021053);教育部留学回国人员科研启动基金资助项目(No. 20151098)
通讯作者△Tel: 024-31939636; E-mail: lixm@mail.cmu.edu.cn
[中图分类号]R363
[文献标志码]A
doi:10.3969/j.issn.1000- 4718.2016.06.026