APP下载

多不饱和脂肪酸对肿瘤血管生成作用的研究进展

2016-01-30王鹏坤王字玲

中国药理学与毒理学杂志 2016年7期
关键词:烯酸内皮细胞脂肪酸

王鹏坤,王字玲

(北京交通大学生命科学与生物工程研究院,北京 100044)

多不饱和脂肪酸对肿瘤血管生成作用的研究进展

王鹏坤,王字玲

(北京交通大学生命科学与生物工程研究院,北京 100044)

多不饱和脂肪酸(PUFA)是构成生物膜的重要结构脂肪酸,对人体有重要的生理功能。PUFA能调节人体的脂质代谢,治疗和预防心脑血管疾病,促进生长发育。此外,PUFA具有抗癌、免疫调节、延缓衰老、减肥和美容作用。近年来研究发现,ω-6 PUFA能促进肿瘤血管生成,但ω-3 PUFA却具有抑制肿瘤血管生成的特性。本文主要针对ω-6和ω-3 PUFA对肿瘤,尤其是对肿瘤血管生成的作用进行综述。

多不饱和脂肪酸;肿瘤;血管生成

多不饱和脂肪酸(polyunsaturated fatty acids,PUFA)是一类含有≥2个双键且碳原子数为16~22的直链脂肪酸,它们遍存于生物界。PUFA是一种重要的营养物质,是所有细胞膜的重要成分。PUFA及其代谢产物参与细胞内多种生理活动,如细胞增殖、血管生成、趋化过程、有丝分裂、凋亡和迁移等,具有重要的生理功能,人们越来越关注PUFA的研究与应用。

肿瘤发生是遗传因素和环境因素共同作用导致细胞内信号通路失调的过程。在肿瘤发生早期,环境中致癌物或非致癌物等引起细胞代谢反应失衡,随后信号通路紊乱,最终导致肿瘤发生。并且肿瘤的生长和转移是一个依赖于血管的过程,早在1971年Folkman[1]提出假设,肿瘤的生长依赖肿瘤血管生成,并且实验证明肿瘤生长至1 ~2 mm3时,需要大量的新生血管以供给肿瘤生长所需的营养物质。新生血管把肿瘤细胞和循环系统直接联系起来,使得供肿瘤生长的物质交换得以进行,同时新生血管还可作为肿瘤转移的通道。

有研究表明,ω-6 PUFA衍生物可通过刺激生长因子的表达来促进肿瘤的血管发生,但是ω-3 PUFA及其衍生物却具有抗血管生成以及抗肿瘤的特性[2]。本文就此两系PUFA对肿瘤血管生成的调节作用进行综述。

1 ω-6不饱和脂肪酸促血管生成的作用

1.1ω-6不饱和脂肪酸在体内的代谢途径

花生四烯酸(arachidonic acid,AA)是一种在体内具有重要生物学意义的ω-6系PUFA。AA主要以磷脂的形式存在于机体各个组织的细胞膜上,经由细胞膜磷脂类水解释放[3]。AA在环氧合酶(cyclooxygenases,COX)、脂氧合酶(lipoxygenas⁃es,LOX)和细胞色素P450(cytochrosome,CYP)酶等酶类催化下可生成多种活性物质。首先,COX催化AA生成前列腺素G2(prostaglandin G2,PGG2)和PGH2,然后进一步生成PGE2、前列环素(PGI2)、PGF2α、PGD2和血栓素(thromboxane A2,TXA2);LOX催化AA生成白三烯(leukotrienes,LT);CYP表氧化酶生成环氧化二十碳三烯酸(epoxyeicosatrienoic acids,EET)和ω-羟化酶生成羟基二十碳四烯酸(hydroxyeicosatetraenoic acids,HETE)[4]。

1.2环氧合酶途径生成的具有促血管生成作用的代谢衍生物

COX1在多种组织中都有表达,但COX2是肿瘤中的早期反应基因,在很多肿瘤组织中以及肿瘤进展期高表达[5],并催化很多促血管生成的类AA的合成[6]。COX2通过调节血管生成的多个步骤诱导血管化,包括血管内皮生长因子(vascular endothe⁃lial growth factor,VEGF)和基质金属蛋白酶的生成,促进血管萌芽、迁移、管腔形成以及增加内皮细胞的存活等[7]。通过COX2途径合成的与血管生成相关的物质主要有PGE2,PGI2,PGF2α,PGD2和TXA2等。COX3是cox1基因表达的一个剪切体,目前研究相对较少。

PGE2是所有前列腺素(PG)类物质中研究最多的一种。PGE2被认为是最重要的促血管生成的PG类物质[8]。有研究表明,通过抑制PGE2受体EP1和EP4可抑制肿瘤生长[9-10]。PGE2可通过其受体E-prostanoid 3(EP3)/Src/表皮生长因子受体(epidermal growth factor receptor,EGFR)/磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/丝氨酸/苏氨酸激酶Akt(serine/threonine kinase Akt,AKT)/糖原合成酶激酶3β途径来上调β-链蛋白的合成[11]。PGE2还可激活血管内皮细胞中的成纤维细胞生长因子受体1通路[12]。此外,PGE2还可激活受体酪氨酸激酶、细胞外调节蛋白激 酶(extracellular regulated protein kinases,ERK)和AKT等途径。

PGI2被认为在肿瘤血管生成和生长方面与TXA2有相反的作用。体内实验也发现,前列环素合成酶的高表达可降低肿瘤血管的生成。但也有研究发现,PGI2可结合过氧化物酶体增殖物激活受体δ(peroxisome proliferators-activated receptors-δ,PPAR-δ),并且此过程与结直肠癌的进展有关[13]。

PGF2α诱发血管生成是通过胞内基质蛋白Cyr61,激活重要的转录因子,如早期生长响应蛋白1和低氧诱导因子1α,通过EGFR反式激活VEGF的表达[14]。

PGD2通过其受体信号通路参与了如哮喘等许多炎症性疾病[15],但关于PGD2肿瘤生长中发挥的作用还不很清楚。有研究表明,在肺癌中肥大细胞产生的PGD2具有抗肿瘤血管生成作用[16]。

在前列腺癌中TXA2的水平升高,并伴随着TXA合成酶的表达升高[17]。TXA2可通过与其受体相结合来增加血小板与内皮细胞之间的黏附作用,并促进血管新生[18]。

1.3脂氧合酶途径生成的具有促血管生成作用的代谢衍生物

LOX包括5-LOX,12-LOX,15-LOXa和15-LOXb等,LOX途径主要生成LT。但相比PG类,LT对于血管生成的作用了解较少。体外实验表明,LTB4通过其受体BLT1信号途径可促进腹腔巨噬细胞中VEGF,VEGFR1和EGF的表达[19]。此外,内皮细胞中LTB4的合成依赖低氧诱导因子1信号通路[20]。LTC4在体外可以诱导内皮细胞的增殖,而LTC4和LTD4能够促进鸡胚绒毛尿膜囊的血管生成[21-22]。

1.4细胞色素P450表氧化酶和 ω-羟化酶途径生成的具有促血管生成作用的代谢衍生物

1.4.1环氧化二十碳三烯酸

在体内,AA是EET的主要来源。EET有4种结构异构体,包括5,6-EET,8,9-EET,11,12-EET和14,15-EET;其中后两种是哺乳动物组织产生的主要EET。第一个关于EET诱导血管生成的研究是星形胶质细胞和内皮细胞共培养的实验,实验结果表明,星形胶质细胞生成的EET可促进内皮细胞毛细管状结构的形成[23]。4种EET的结构异构体均可导致啮齿类内皮细胞AKT磷酸化水平上升和细胞增殖,5,6-EET和14,15-EET的促进内皮细胞增殖作用对于PI3K抑制剂敏感,而8,9-EET和11,12-EET与P38丝裂原活化蛋白激酶(mitogen-acti⁃vated protein kinases,P38MAPK)途径有关[24]。

体外实验表明,含有8,9-EET的条件培养基会刺激脑微血管内皮细胞增殖、转移和管腔形成能力[25]。11,12-EET可通过内皮细胞表面的G蛋白偶联受体发挥促血管生成作用[26]。14,15-EET具有促血管新生的能力,通过人微血管内皮细胞与动物实验发现,抑制瞬变感受器电位蛋白V4即可抑制14,15-EET的促管腔形成和血管新生作用[27]。使用EET的抗结剂“14,15-EEZE”几乎完全抑制体内、外VEGF诱导的内皮细胞管腔形成。EET在低氧诱导的血管生成反应中扮演重要角色[28],而此效应与AMP依赖性蛋白激酶的激活有关[29]。14,15-EET可以使STAT-3酪氨酸残基磷酸化且刺激VEGF的表达水平升高[30]。此外,也有研究表明,14,15-EET可诱导EGFR,ERK和PI3K/AKT等蛋白的表达[31]。

1.4.2羟基二十碳四烯酸

AA在CYP ω-羟化酶催化下代谢为HETE,包括7-,10-,12-,13-,15-,16-,17-,18-,19-和20-HETE,其中20-HETE是最主要的促炎症代谢物[32]。它在内皮细胞中通过激活NF-κβ途径,诱导内皮细胞炎症细胞因子,进而导致血管内皮功能障碍[33]。内皮祖细胞实验表明,20-HETE和VEGF在促进人内皮祖细胞增殖方面具有协同效应;体内实验也表明,20-HETE具有血管新生的调节作用[34-35]。

2 ω-3多不饱和脂肪酸抑制血管生成的作用

ω-3 PUFA主要存在于深海多脂鱼类,一些蔬菜和坚果中也含有少量ω-3 PUFA[36]。早在1988年,Fox和DiCorleto[37]已证明鱼油可体外抑制血小板衍生生长因子(platelet-derived growth factor,PDGF)的产生。进食鱼油志愿者体内单核细胞中ω-3 PUFA的含量升高,而PDGF-A和PDGF-BmRNA表达分别减少66%和70%[38]。但类似实验尚有在癌症患者中进行。饮食摄入ω-3 PUFA可降低小鼠乳腺癌移植瘤模型中微血管密度和VEGFmRNA的转录水平[39]。鲨鱼油和橄榄油的混合物可以抑制VEGF与其受体Flk-1和Flk-2的结合[40]。二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)是2种重要的ω-3系PUFA,详细后述。

2.1二十碳五烯酸和二十二碳六烯酸抑制血管生成的作用

EPA可减少内皮细胞VEGF受体Flk-1的表达。用EPA 0.5 mg·L-1处理牛毛细血管内皮细胞48 h可抑制VEGF诱导的增殖效应且具有浓度依赖性[41]。此外,EPA可以通过部分抑制PDGF信号转导早期反应基因c-fos的转录作用,减少c-fosmRNA的表达。EPA还可通过调节PDGF信号转导的各个步骤调节血管平滑肌细胞的增殖[42]。在HT-29结肠癌细胞裸鼠移植瘤中,DHA都可抑制VEGF的表达,并减少微血管密度[43]。DHA还可通过抑制VEGF信号通路抑制病理性视网膜血管新生[44]。

ω-3 PUFA,如α-亚麻酸,可下调诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、COX-2和肿瘤坏死因子α(tumor necrosis factorα,TNF-α)基因的表达,并且缓解内皮紊乱[45-46]。也有报道称,用DHA处理人结直肠癌细胞,可降低NO含量。在结直肠癌中,iNOS对COX-2依赖性血管生成作用受VEGF的调节;并且也有实验证明,VEGF诱导的血管生成效应也受到NO产生量的调节[47-48]。

ω-3 PUFA可减少AA的下游代谢产物的产生。其还可靶向AA代谢的因子,替换细胞膜上ω-6 PUFA,竞争抑制催化AA代谢相关酶类如COX、LOX、脱饱和酶和延长酶[49-50]。EPA和DHA可竞争性地抑制AA与CYP的结合,减少CYP催化AA生成EET[51-53]。EPA还可减少PGE2产生,并减弱PGE2对EGFR信号通路的激活作用[54-55]。

2.2二十碳五烯酸和二十二碳六烯酸抑制血管生成具有重要作用的代谢衍生物

CYP表氧化酶可催化EPA和DHA分别生成EpETE和EpDPE,17,18-EpETE和19,20-EpDPE分别是人体中EPA和DHA通过CYP合成的最主要的两种结构异构体[51,56-57]。其作用与EET相反,可抑制血管生成,并且这种作用与FGF2的抑制和P38MAPK通路介导的细胞周期蛋白D1/细胞周期依赖性激酶4复合体的表达下调有关[58-59]。

3 ω-6/ ω-3的比例对于血管生成的作用

ω-6/ω-3的膳食平衡是学术界关注的问题,世界卫生组织和联合国粮农组织推荐的比值是5~10∶1。Kang等[2]提出,目前很多研究对于ω-3和ω-6 PUFA对血管生成的作用研究多集中于两类物质的单独定量,但对它们在体内的合理比例仍有争论。对于ω-6/ω-3的比例问题,fat-1转基因小鼠对此研究提供了很好的模型。因其转入秀丽隐杆线虫的fat-1基因,具有将内源性ω-6 PUFA转换成ω-3 PUFA的能力。fat-1转基因小鼠体内促血管生成因子如NF-κβ,TNF-α和IL-1β的含量较之正常小鼠明显减少[60-62]。流行病学调查表明摄入高含量鱼油的人群癌症的发病率也较低,ω-6/ω-3的比值低,其血液中VEGF水平也相对较低[63]。Yang等[64]通过对比相同癌症患者体内的肿瘤组织与癌旁组织的ω-6/ω-3比例发现肿瘤组织中ω-6/ω-3比值较高。研究表明,人体内ω-6/ω-3的比例高低与患乳腺癌的风险成正相关[65]。

但也有一些研究表明,ω-3 PUFA对于患癌症的风险并无作用[66],这些研究大多未考虑到ω-6/ω-3的比例问题。目前对于ω-6/ω-3的比例越来越多的实验数据表明,对于癌症患者尽量减少ω-6脂肪酸的摄入,防止AA及其衍生物含量在组织或血液中升高,并增加ω-3脂肪酸的摄入量,在临床上是一个值得考虑的因素。

4 展望

综上所述,PUFA参与生命的基本活动是人体中不可缺少的重要营养物质,不仅是细胞膜的组成部分,同时也有着很重要的生理和药理作用,特别是ω-3和ω-6 PUFA是维持人体健康的重要因素。随着人们对两者的功能的认识不断加深,尤其是对于肿瘤血管生成的作用方面越来越多地受到研究者的重视,尽量减少ω-6系PUFA的摄入或服用药物抑制AA在体内的代谢过程,并适量提高ω-3系PUFA的摄入,对于肿瘤的辅助治疗具有广阔的应用前景。

参考文献:

[1]Folkman J.Tumor angiogenesis:therapeutic impli⁃cations[J].N Engl J Med,1971,285(21):1182-1186.

[2]Kang JX,Liu A.The role of the tissue omega-6/ omega-3 fatty acid ratio in regulating tumor angio⁃genesis[J].Cancer Metastasis Rev,2013,32(1-2):201-210.

[3] Berquin IM,Edwards IJ,Kridel SJ,Chen YQ. Polyunsaturated fatty acid metabolism in prostate cancer[J].Cancer Metast Rev,2011,30(3-4):295-309.

[4]Salvado MD,Alfranca A,Haeggström JZ,Redondo JM.Prostanoids in tumor angiogenesis:therapeu⁃tic intervention beyond COX-2[J].Trends Mol Med,2012,18(4):233-243.

[5]Gong Z,Bostick RM,Xie D,Hurley TG,Deng Z,Dixon DA,et al.Genetic polymorphisms in the cy⁃clooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma[J].Int J Colorectal Dis,2009,24(6):647-654.

[6]Li Y,Ma C,Qian M,Wen Z,Jing H,Qian D. Butein induces cell apoptosis and inhibition of cy⁃clooxygenase-2 expression in A549 lung cancer cells[J].Mol Med Rep,2014,9(2):763-767.

[7]Gately S,Li WW.Multiple roles of COX-2 in tumor angiogenesis:a target for antiangiogenic therapy[J].Semin Oncol,2004,31(2 Suppl 7):2-11.

[8]Hoang KG,Allison S,Murray M,Petrovic N.Pros⁃tanoids regulate angiogenesis acting primarily on IP and EP4 receptors[J].Microvasc Res,2015,101:127-134.

[9]O′Callaghan G,Ryan A,Neary P,O′Mahony C,Shanahan F,Houston A.Targeting the EP1 recep⁃tor reduces Fas ligand expression and increases the antitumor immune response in anin vivo,mod⁃el of colon cancer[J].Int J Cancer,2013,133(4):825-834.

[10]Chang J,Vacher J,Yao B,Fan X,Zhang B,Har⁃ris RC,et al.Prostaglandin E receptor 4(EP4)pro⁃motes colonic tumorigenesis[J].Oncotarget,2015,6(32):33500-33511.

[11]Du M,Shi F,Zhang H,Xia S,Zhang M,Ma J,et al.Prostaglandin E2 promotes human cholangio⁃carcinoma cell proliferation,migration and invasion through the upregulation of β-catenin expression via EP3-4 receptor[J].Oncol Rep,2015,34(2):715-726.

[12]Tomlinson DC,Baxter EW,Loadman PM,Hull MA, Knowles MA.FGFR1-Induced epithelial to mesen⁃chymal transition through MAPK/PLCγ/COX-2-me⁃diated mechanisms[J].PLoS One,2012,7(6):e38972.

[13]Gupta RA,Tan J,Krause WF,Geraci MW,Willson TM,Dey SK,et al.Prostacyclin-mediated activa⁃tion of peroxisome proliferator-activated receptor delta in colorectal cancer[J].Proc Natl Acad Sci USA,2000,97(24):13275-13280.

[14]Xu W,Chou CL,Israel DD,Hutchinson AJ,Regan JW.PGF(2alpha)Stimulates FP pros⁃tanoid receptor mediated crosstalk between Ras/ Raf signaling and Tcf transcriptional activation[J].Biochem Biophys Res Commun,2009,381(4):625-629.

[15]Takahashi G,Asanuma F,Suzuki N,Hattori M,Sakamoto S,Kugimiya A,et al.Effect of the potent and selective DP1 receptor antagonist,asapiprant(S-555739),in animal models of aller⁃gic rhinitis and allergic asthma[J].Eur J Pharma⁃col,2015,765:15-23.

[16]Murata T,Aritake K,Matsumoto S,Kamauchi S,Nakagawa T,Hori M,et al.Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung car⁃cinoma[J].Proc Natl Acad Sci USA,2011,108(49):19802-19807.

[17]Cathcart MC,Reynolds JV,O′byrne KJ,Pidgeon GP.The role of prostacyclin synthase and throm⁃boxane synthase signaling in the development and progression of cancer[J].Biochim Biophys Acta,2010,1805(2):153-166.

[18]Amano H,Ito Y,Eshima K,Kato S,Ogawa F,Hosono K,et al.Thromboxane a2 induces blood flow recovery via platelet adhesion to ischaemic regions[J].CardiovascRes,2015,107(4):509-521.

[19]Ohkubo H,Ito Y,Minamino T,Mishima T,Hirata M,Hosono K,et al.Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic isch⁃emia/reperfusion injury through the enhancement of macrophage recruitment[J].FASEB J,2013,27(8):3132-3143.

[20]PatelN,KalraVK.Placentagrowthfactor-induced early growth response 1(Egr-1)regulates hypoxiainducible factor-1alpha(HIF-1alpha)in endothelial cells[J].J Biol Chem,2010,285(27):20570-20579.

[21]Modat G,Muller A,Mary A,Grégoire C,Bonne C. Differential effects of leukotrienes B4 and C4 on bovine aortic endothelial cell proliferationin vitro[J].Prostaglandins,1987,33(4):531-538.

[22] Tsopanoglou NE,Pipili-Synetos E,Maragoudakis ME.Leukotrienes C4 and D4 promote angiogene⁃sis via a receptor-mediated interaction[J].Eur J Pharmacol,1994,258(1-2):151-154.

[23]Munzenmaier DH,Harder DR.Cerebral microvas⁃cular endothelial cell tube formation:role of astro⁃cytic epoxyeicosatrienoic acid release[J].Am J Physiol Heart Circ Physiol,2000,278(4):H1163-H1167.

[24]Park HS,Kim MS,Huh SH,Park J,Chung J,Kang SS,et al.Akt(protein kinase B)Negatively regulates SEK1 by means of protein phosphoryla⁃tion[J].J Biol Chem,2002,277(4):2573-2578.

[25]Ma J,Zhang L,Han W,Shen T,Ma C,Liu Y,et al.Activation of JNK/c-Jun is required for the prolif⁃eration,survival,and angiogenesis induced by EET in pulmonary artery endothelial cells[J].J Lipid Res,2012,53(6):1093-1105.

[26]Ding Y,Frömel T,Popp R,Falck JR,Schunck WH,Fleming I.The biological actions of 11,12-ep⁃oxyeicosatrienoic acid in endothelial cells are spe⁃cific to the R/S-enantiomer and require the G(s)protein[J].J Pharmacol Exp Ther,2014,350(1):14-21.

[27]Su KH,Lee KI,Shyue SK,Chen HY,Wei J,Lee TS.Implication of transient receptor potential vanil⁃loid type 1 in 14,15-epoxyeicosatrienoic acid-in⁃duced angiogenesis[J].Int J Biol Sci,2014,10(9):990-996.

[28]Suzuki S,Oguro A,Osada-Oka M,Funae Y,Ima⁃oka S.Epoxyeicosatrienoic acids and/or their me⁃tabolites promote hypoxic response of cells[J].J Pharmacol Sci,2008,108(1):79-88.

[29]Webler AC,Michaelis UR,Popp R,Barbosa-Sicard E,Murugan A,Falck JR,et al.Epoxyeico⁃satrienoic acids are part of the VEGF-activated sig⁃naling cascade leading to angiogenesis[J].Am J Physiol Cell Physiol,2008,295(5):C1292-C1301.

[30]Cheranov SY,Karpurapu M,Wang D,Zhang B,Venema RC,Rao GN.An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF ex⁃pression and angiogenesis[J].Blood,2008,111(12):5581-5591.

[31]Zhang Z,Hu D,Zhou M,Liu H,Wu J,Huang S,et al.14,15-Epoxyeicosatrienoic acid induces the proliferation and anti-apoptosis of human carcino⁃ma cell[J].Daru,2011,19(6):462-468.

[32]Roman RJ.P-450 Metabolites of arachidonic acid in the control of cardiovascular function[J].Physiol Rev,2002,82(1):131-185.

[33]Alsaad AM,Zordoky BN,Tse MM,El-Kadi AO. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy[J].Drug Metab Rev,2013,45(2):173-195.

[34] Chen L,Ackerman R,Saleh M,Gotlinger KH,Kessler M,Mendelowitz LG,et al.20-HETE Reg⁃ulates the angiogenic functions of human endothe⁃lial progenitor cells and contributes to angiogene⁃sisin vivo[J].J Pharmacol Exp Ther,2014,348(3):442-451.

[35] Guo AM,Janic B,Sheng J,Falck JR,Roman RJ,Edwards PA,et al.The cytochrome P450 4A/ F-20-hydroxyeicosatetraenoic acid system:a regu⁃lator of endothelial precursor cells derived from human umbilical cord blood[J].J Pharmacol Exp Ther,2011,338(2):421-429.

[36]Kang JX.Omega-3:a link between global climate change and human health[J].Biotechnol Adv,2011,29(4):388-390.

[37]Fox PL,Dicorleto PE.Fish oils inhibit endothelial cell production of platelet-derived growth factorlike protein[J].Science,1988,241(4864):453-456.

[38] Kaminski WE,Jendraschak E,Kiefl R,Von Schacky C.Dietary omega-3 fatty acids lower lev⁃els of platelet-derived growth factor mRNA in human mononuclear cells[J].Blood,1993,81(7):1871-1879.

[39]Rose DP,Connolly JM.Antiangiogenicity of doco⁃sahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice[J].Int J Oncol,1999,15(5):1011-1015.

[40] Yuan L,Yoshida M,Davis PF.Inhibition of proangiogenic factors by a lipid-rich shark extract[J].J Med Food,2006,9(3):300-306.

[41] Yang SP,Morita I,Murota SI.Eicosapentaenoic acid attenuates vascular endothelial growth factorinduced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells[J].J Cell Physiol,1998,176(2):342-349.

[42]Terano T,Shiina T,Tamura Y.Eicosapentaenoic acid suppressed the proliferation ofvascular smooth muscle cells through modulation of various steps of growth signals[J].Lipids,1996,31(Suppl):S301-S304.

[43]Calviello G,Di Nicuolo F,Gragnoli S,Piccioni E,Serini S,Maggiano N,et al.n-3 PUFAs reduce VEGF expression in human colon cancer cells modulatingtheCOX-2/PGE2inducedERK-1and-2 and HIF-1alpha induction pathway[J].Car⁃cinogenesis,2004,25(12):2303-2310.

[44] Matesanz N,Park G,Mcallister H,Leahey W,Devine A,Mcveigh GE,et al.Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells[J].Invest Ophthal⁃mol Vis Sci,2010,51(12):6815-6825.

[45] Hassan A,Ibrahim A,Mbodji K, Coëffier M,Ziegler F,Bounoure F,et al.An α-linolenic acidrich formula reduces oxidative stress and inflam⁃mation by regulating NF-κB in rats with TNBS-induced colitis[J].JNutr,2010,140(10):1714-1721.

[46]Zhang W,Fu F,Tie R,Liang X,Tian F,Xing W,et al.Alpha-linolenic acid intake prevents endotheli⁃al dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms[J].Vasa,2013,42(6):421-428.

[47]Cianchi F,Cortesini C,Fantappiè O,Messerini L,Sardi I,Lasagna N,et al.Cyclooxygenase-2 acti⁃vation mediates the proangiogenic effectof nitric oxide in colorectal cancer[J].Clin Cancer Res,2004,10(8):2694-2704.

[48] Ziche M,Morbidelli L,Choudhuri R,Zhang HT,Donnini S,Granger HJ,et al.Nitric oxide syn⁃thase lies downstream from vascular endothelial growth factor-induced butnotbasic fibroblast growth factor-induced angiogenesis[J].JClin Invest,1997,99(11):2625-2634.

[49] Hyde CA,Missailidis S.Inhibition of arachidonic acid metabolism and its implication on cell prolifer⁃ation and tumour-angiogenesis[J].Int Immunopharmacol,2009,9(6):701-715.

[50]Eilati E,Small CC,Mcgee SR,Kurrey NK,Hales DB.Anti-inflammatory effects of fish oil in ovaries of laying hens target prostaglandin pathways[J].Lipids Health Dis,2013,12(1):152.

[51] Fer M,Dréano Y,Lucas D,Corcos L,Salaün JP,Berthou F,et al.Metabolism of eicosapentae⁃noic and docosahexaenoic acids by recombinant human cytochromes P450[J].Arch Biochem Bio⁃phys,2008,471(2):116-125.

[52]Lucas D,Goulitquer S,Marienhagen J,Fer M,Dreano Y,Schwaneberg U,et al.Stereoselective epoxidation of the last double bond of polyunsatu⁃rated fatty acids by human cytochromes P450[J].J Lipid Res,2010,51(5):1125-1133.

[53] Arnold C,Markovic M,Blossey K,Wallukat G,Fischer R,Dechend R,et al.Arachidonic acidmetabolizing cytochrome P450 enzymes are tar⁃gets of omega-3 fatty acids[J].J Biol Chem,2010,285(43):32720-32733.

[54] Buchanan FG,Wang D,Bargiacchi F,Dubois RN.Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor[J].J Biol Chem,2003,278(37):35451-35457.

[55] Yang P,Jiang Y,Fischer SM.Prostaglandin E3 metabolism and cancer[J].Cancer Lett,2014,348(1-2):1-11.

[56]Kunisawa J,Arita M,Hayasaka T,Harada T,Iwa⁃moto R,Nagasawa R,et al.Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut[J].Sci Rep,2015,5:9750.

[57]Morin C,Fortin S,Rousseau E.19,20-EpDPE,A bioactive CYP450 metabolite of DHA monoacyglyc⁃eride,decreases Ca2+sensitivity in human pulmo⁃nary arteries[J].Am J Physiol Heart Circ Physiol,2011,301(4):H1311-H1318.

[58]Zhang G,Panigrahy D,Mahakian LM,Yang J,Liu JY,Stephen Lee KS,et al.Epoxy metabolites of docosahexaenoic acid(DHA)inhibit angiogene⁃sis,tumor growth,and metastasis[J].Proc Natl Acad Sci USA,2013,110(16):6530-6535.

[59]Cui PH,Petrovic N,Murray M.The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell pro⁃liferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation[J].BrJPharmacol,2011,162(5):1143-1155.

[60] Romanatto T,Fiamoncini J,Wang B,Curi R,Kang JX.Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice[J].Biochim Biophys Acta,2014,1842(2):186-191.

[61]Attaman JA,Stanic AK,Kim M,Lynch MP,Rueda BR,Styer AK.The anti-inflammatory impact of omega-3 polyunsaturated fatty acids during the establishment of endometriosis-like lesions[J].Am J Reprod Immunol,2014,72(4):392-402.

[62]Li J,Li FR,Wei D,Jia W,Kang JX,Stefanovic-Racic M,et al.Endogenous ω-3 polyunsaturated fatty acid production confers resistance to obesity,dyslipidemia,and diabetes in mice[J].Mol Endo⁃crinol,2014,28(8):1316-1328.

[63] Ambring A,Johansson M,Axelsen M,Gan L,Strandvik B,Friberg P.Mediterranean-inspired diet lowers the ratio of serum phospholipid n-6 to n-3 fatty acids,the number of leukocytes and platelets,and vascular endothelial growth factor in healthy subjects[J].Am J Clin Nutr,2006,83(3):575-581.

[64]Yang K,Li H,Dong J,Dong Y,Wang CZ. Expression profile of polyunsaturated fatty acids in colorectalcancer[J].WorldJGastroenterol,2015,21(8):2405-2412.

[65]SimonsenN,Van′tVeerP,StrainJJ,Martin-Moreno JM,Huttunen JK,Navajas JF,et al.Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study.Europe⁃an Community Multicenter Study on Antioxidants,Myocardial Infarction,and Breast Cancer[J].Am J Epidemiol,1998,147(4):342-352.

[66]Terry P, Bergkvist L, Holmberg L, Wolk A. No association between fat and fatty acids intake and risk of colorectal cancer[J].Cancer Epidemiol Biomarkers Prev,2001,10(8):913-914.

Polyunsaturated fatty acids in regulation of tumor angiogenesis:research progress

WANG Peng-kun,WANG Zi-ling
(Institute of Life Sciences and Biotechnology,Beijing Jiaotong University,Beijing 100044,China)

Polyunsaturated fatty acids(PUFAs)are important structural fatty acids of biological membrane.They play important roles in regulation of lipid metabolism,stimulation of growth and development,protection a gainstcancer,retardation of aging,immuno-regulation,cardiovascular health,and bodymass loss.In recent years,researchers have found t hat ω-6 PUFAs can promote tumor angiogenesis,while ω-3 PUFAs have the properties of inhibiting tumor angiogenesis.This review focuses on the effects of these two types of fatty acids on tumors,especially on the regulation of tumor angiogenesis.

polyunsaturated fatty acids;tumor;angiogenesis

WANG Zi-ling,Tel:(010)51684348,E-mail:zlw@bjtu.edu.cn

R979.1

A

1000-3002-(2016)07-0790-07

10.3867/j.issn.1000-3002.2016.07.013

Foundation item:The project supported by National High Technology Research and Development Program of China(863 Program)(SS2014AA021605)

2015-12-15 接受日期:2016-06-17)

(本文编辑:齐春会)

国家高技术研究发展计划(863计划)(SS2014AA021605)

王鹏坤(1987-),男,硕士研究生,主要从事抗肿瘤血管生成药物疗效相关的代谢组学研究,E-mail:12121670@bjtu.edu.cn

王字玲,E-mail:zlw@bjtu.edu.cn,Tel:(010)51684348

猜你喜欢

烯酸内皮细胞脂肪酸
HMGB1基因对高糖诱导的血管内皮细胞损伤的影响
揭开反式脂肪酸的真面目
二十二碳五烯酸甲酯标准样品研制
4种狗母鱼科鱼类肌肉脂肪酸分析
豫南茶树种质资源籽实脂肪含量及脂肪酸组成分析
浅议角膜内皮细胞检查
荷莲荳脂肪酸成分分析
原花青素B2通过Akt/FoxO4通路拮抗内皮细胞衰老的实验研究
揭开反式脂肪酸的真面目
高度不饱和脂肪酸对水生动物生长、发育和繁殖的影响与机理