低氧条件下低氧诱导因子1α/miR-210调节回路对肿瘤能量代谢及血管生成的调控
2016-01-25曹治云张志灯陈旭征黄争荣王雷陈立武陈瑞琦廖联明
曹治云张志灯陈旭征黄争荣王雷陈立武陈瑞琦廖联明
·综述·
低氧条件下低氧诱导因子1α/miR-210调节回路对肿瘤能量代谢及血管生成的调控
曹治云1张志灯2陈旭征1黄争荣3王雷4陈立武5陈瑞琦6廖联明7
低氧诱导因子1(HIF-1)是低氧下肿瘤细胞信号通路的核心调控因子,研究表明与HIF-1生物学调控功能(血管生成、能量代谢、细胞增殖、细胞凋亡和侵袭转移等)起协同作用的是miR-210,miR-210受低氧及HIF-1α调控而表达上调,反之上调的miR-210又增强HIF-1α分子稳定性,由此两者共同构成HIF-1α/miR-210调节回路,对肿瘤细胞多种生物学行为进行精确调控,本文对HIF-1α/miR-210调节肿瘤能量代谢及血管生成两方面做一简要综述。
芳香烃受体核转位子; 微RNAs; 能量代谢; 血管生成
大多数实体肿瘤组织中都存在氧分压降低甚至供氧不足,多数研究已经证实此过程与低氧相关信号通路的核心分子—低氧诱导因子1(hypoxia-inducible factor-1,HIF-1)直接相关,近年的研究又发现小分子RNA miR-210参与HIF-1相关的肿瘤能量代谢及血管生成信号通路的分子调控,现综述如下。
一、HIF-1与miR-210
缺氧指组织中的供氧不足。细胞通常会通过启动低氧信号调节通路,从而改变相关分子的DNA转录模式以应对组织中的氧分压降低,应对这种改变的核心分子是HIF-1。HIF-1是1个二聚体分子,由对氧敏感的HIF-1α亚基和对氧不敏感的HIF-1β亚基组成。在正常氧分压下HIF-1β是具有活性的分子,而HIF-1α则通过脯氨酰羟化酶羟化其分子上的脯氨酸后进入蛋白酶体降解通路最终被酶解代谢[1-2]。在肿瘤乏氧的微环境中,HIF-1α的常氧降解途径被阻断,直接导致HIF-1α水平的累积。已经有实验数据证明HIF-1α调节肿瘤细胞适应低氧环境与微小核苷酸(miRNAs)具有极大相关性[3-4]。
miRNAs是一种小分子单链非编码RNA,通过阻断mRNA的翻译或通过加速mRNA的降解调控细胞内蛋白质的表达水平。miRNAs分子上的2 ~ 8个核苷酸的插入区和所调控的靶分子3'非翻译区配对,一旦碱基配对成功,miRNAs引导沉默复合物成功结合到靶基因,从而抑制靶基因翻译[5]。miRNAs也有其它的调控机制,但是,其插入区与靶标分子的非翻译区结合是miRNAs最重要的调控机制,因为miRNAs插入区与靶标分子非翻译区的结合能力远远高于其他部位[6]。一个miRNA可以影响100种以上的靶标分子翻译活性,从而证明了miRNAs对细胞生命进程调控影响的范围之广[7]。
作为癌基因或抑癌基因,某些miRNAs参与针对HIF-1通路上游或下游信号分子的表达调控[7]。作为肿瘤抑制基因的有miR-15或miR-16,通过上调凋亡蛋白和下调内源性致癌因子的作用达到抑制肿瘤生长的目的,同样的某些过表达miRNAs可以促进肿瘤的生长或下调内源性肿瘤抑制因子的表达,如miR-199a和miR-20b。就miRNAs整体而言,其调控超过60﹪的蛋白质编码基因。由于它们在基因表达及细胞生物学功能中不可或缺的角色,任何他们自身的表达或调控障碍都可能导致重大的疾病发生,其中最显著相关的就是肿瘤的发生和进展[5-7]。
在缺氧相关HIF-1为核心因子的信号通路中,最敏感且最有影响力的miR是miR-210。miR-210的种子序列(6 ~ 8个核苷酸)可以通过互补配对结合到HIF-1的3'非翻译区端,进而调控HIF-1翻译。已经证实HIF-1α介导的肿瘤细胞生物学功能包括细胞周期、能量代谢、细胞凋亡、血管新生、细胞增殖和细胞定向迁移等均与miR-210的相关调控有关。虽然目前已经明确被miR-210调控的靶基因数量尚且有限,但通过使用软件(如TargetScan和PicTar软件)已经寻找出许多潜在的靶标分子(其3'非翻译区区域与miR-210的种子区可相互匹配),相信在不久的将来越来越多被miR-210调控的靶基因将被发现[8]。
二、HIF-1α/miR-210正反馈调节回路
在常氧条件下,内源性miR-210水平维持在非常低的状态[5]。miR-210分子稳定性是通过HIF-1α绑定到其近端启动子区域的缺氧反元件上,从而抑制miR-210的降解[9]。在低氧条件下,HIF-1α的浓度累积促进miR-210表达增加,反过来miR-210又可通过抑制HIF-1α的降解增强其分子的稳定性,这表明HIF-1α与miR-210之间是一个正反馈回路的调控关系[10]。此外,由于miR-210的浓度依赖于HIF-1α的水平,故而miR-210在肿瘤组织中已成为肿瘤微环境是否缺氧的预测指标[11]。在细胞氧分压监测系统中,正常条件下脯氨酰羟化酶能通过羟基化HIF-1α分子中的脯氨酸残基进而诱导其降解,而有研究表明miR-210可通过抑制Glycerol-3-phosphate dehydrogenase 1-like protein 表达和脯氨酰羟化酶活性促使HIF-1α浓度累积后入核上调血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)的表达[12-13]。实验表明,miR-210对HIF-1α的调节还可能通过抑制琥珀酸脱氢酶复合体亚基D(succinatedehydrogenase D,SDHD)实现,miR-210通过调控SDHD促进HIF-1α基因的稳定性,而HIF-1α进一步上调miR-210的浓度,从而加速整个正反馈调控回路[14-16]。此外,HIF-1α对miR-210调控也可以在常氧下完成,常氧下林希式肿瘤因子可选择性地结合在羟脯氨酰残基上进而通过蛋白酶体E3复合物促使HIF-1α降解。然而有实验表明突变的林希式肿瘤因子使HIF-1α水平升高,可能是常氧条件下的仿缺氧应答[17-20]。
三、HIF-1α/miR-210对肿瘤细胞糖代谢的调控
在缺氧条件下,肿瘤细胞选择通过糖酵解和发酵途径而不是三羧酸循环获得生存的能量。缺氧时,肿瘤细胞会刺激糖酵解相关信号通路蛋白的表达,例如丙酮酸脱氢酶激酶、乳酸脱氢酶、细胞色素C氧化酶2、和线粒体Lon蛋白酶。此外,低氧条件会诱导肿瘤细胞抑制某些蛋白质的表达,如参与线粒体呼吸链的铁硫簇支架蛋白(ISCU1和ISCU2)。ISCU1和ISCU2在Fe-S簇装配中发挥重要的作用,是线粒体电子传递链复合物的组成部分,有助发挥相关酶的催化作用,从而传递电子和能量。miR-210通过与ISCU1和ISCU2的3'非翻译区配对从而下调ISCU1和ISCU2的表达,阻断三羧酸循环及电子呼吸链的传递,促使线粒体氧化磷酸化转变为糖酵解,之后酵解产物进入乳酸循环,大大增加乳酸的发酵产率,这一现象又被称为Warburg效应[21-23]。虽然乳酸发酵所产能量远比氧化磷酸化少,一分子葡萄糖仅仅产生2个分子ATP,然而这些能量对维持肿瘤细胞增殖已经够用,增强糖酵解反应不仅有助于弥补线粒体呼吸功能的不足从而缓解能源危机,更为重要的是糖酵解中间产物还为构成肿瘤细胞增殖所需的各种生物大分子(如核苷、氨基酸和脂质)提供原材料,以维持其细胞快速生长的需要。因此,低氧条件下肿瘤细胞更喜欢通过糖酵解产物进行乳酸发酵作为一个产能方式,因为除了2分子的ATP之外还有1分子NAD+为肿瘤细胞增殖提供能量[24]。
抛开miR-210对ISCU1和ISCU2的影响不谈,缺氧条件下miR-210对细胞代谢或葡萄糖运输相关基因(靶蛋白)的调控可能会进一步增强Warburg效应,从而影响肿瘤微环境,促进肿瘤生长、侵袭和转移[25]。除了对肿瘤细胞线粒体代谢的干扰,浓度增高的miR-210还下调SDHDⅡ的表达(SDHDⅡ是电子传递链的一个关键组成部分),导致不正常的线粒体合成及线粒体膜电位降低减少[26]。
四、HIF-1α/miR-210促进肿瘤细胞的血管新生和侵袭
肿瘤细胞通过新生血管的形成提供肿瘤增殖、转移和侵袭所需要的能量和氧。多项研究成果已经证实,缺氧可以诱导肿瘤组织的血管生成,在这一过程中miR-210发挥着重要作用。有趣的是,miR-210对内皮细胞血管生成的影响可归结为miR-210对糖代谢的影响,因为miR-210的过表达可以促进葡萄糖的糖酵解代谢进程,而后推动糖酵解产物进入乳酸循环(如上所述)。miR-210对糖酵解的调控关开关之一在于上调葡萄糖转运蛋白的表达(如GLUT-1),当GLUT-1表达上调后VEGF和血小板衍生生长因子的表达会增加,随后在细胞外形成适合血管生成的微环境[27]。此过程中miR-210能够通过受体酪氨酸激酶配体EFNA3和磷酸酪氨酸磷酸酶1B配体定位的靶向方式调控VEGF的表达量进而调节细胞分泌VEGF的水平。miR-210介导EFNA3或磷酸酪氨酸磷酸酶1B与VEGF的表达是负反馈调节,通过降低EFNA3或下调磷酸酪氨酸磷酸酶1B从而增加VEGF-2的表达量,加速细胞分泌VEGF后诱导毛细血管出芽和管状结构形成[26-27]。最近的研究已经表明,在缺氧条件下HIF-1α的过表达可促进肿瘤细胞通过胞外体、囊泡等与靶细胞进行信息交换,释放可溶性细胞因子如基质金属蛋白酶组织抑制剂-1,通过PI3K/Akt信号通路诱导miR-210的表达量上调[28],从而增加血小管形成。这种信息交流可能发生在肿瘤细胞和血管内皮细胞之间,如人白血病细胞K562暴露在缺氧条件下时,可检测到HIF-1α和miR-210的表达水平升高,随后miR-210被释放入胞浆,继而EFNA3下调,VEGF表达水平增加,最终血管内皮细胞逐渐诱发血管新生[29]。除了增加血管生成的潜力,肿瘤细胞在缺氧条件下具有比正常细胞更明显的侵袭能力,而此事件核心事件也是肿瘤细胞过表达miR-210[30-31]。缺氧条件下miR-210能促进迁移,提高肝癌细胞的侵袭能力,反之miR-210表达下调可以抑制肾细胞的迁移和侵袭潜能[32-33]。临床研究也证实低氧条件下miR-210与许多肿瘤的预后不良直接相关。
综上所述,缺氧条件下许多miRNA如miRNA-21、93、103、107、192、195、210和213可显著诱导上调HIF-1α。其中,miR-210与HIF-1α的相关性最为突出,miR-210有可能成为肿瘤诊断的生物标记物,同时miR-210在肿瘤细胞的增殖、转移以及侵袭过程中具有多种作用与功能,随着更多新的实验方法的建立及计算机模拟建模程序的发展,相信对miR-210的生物学功能将会有更深入的研究进展,这些研究成果必将为以HIF-1α/miR-210为有效的治疗靶点的肿瘤治疗研究奠定基础。
1 Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2--is one more important than the other?[J]. Vascul Pharmacol, 2012, 56(5/6):245-251.
2 Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing[J]. Science, 2001, 292(5516): 464-468.
3 Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor[J]. J Biol Chem, 2004, 279(37):38458-38465.
4 Semenza GL. HIF-1: upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56.
5 Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia[J]. Mol Cancer, 2014, 13:28.
6 Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radic Biol Med, 2013,64:20-30.
7 Gee HE, Ivan C, Calin GA, et al. HypoxamiRs and cancer: from biology to targeted therapy[J]. Antioxid Redox Signal, 2014,21(8):1220-1238.
8 Huang X, Le QT, Giaccia AJ. MiR-210--micromanager of the hypoxia pathway[J]. Trends Mol Med, 2010, 16(5): 230-237.
9 Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire[J]. FEBS Lett, 2011, 585(13): 2087-2099.
10 Xu TX, Zhao SZ, Dong M, et al. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia[J]. Eur Rev Med Pharmacol Sci, 2016, 20(3):399-406.
11 Sun Y, Xing X, Liu Q, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells[J]. Int J Oncol, 2015, 46(2):750-756.
12 Kelly TJ, Souza AL, Clish CB, et al. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like[J]. Mol Cell Biol, 2011, 31(13):2696-2706.
13 Liu SC, Chuang SM, Hsu CJ, et al. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression[J]. Cell Death Dis, 2014,5(10):e1485.
14 Voorhoeve PM. MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity?[J]. Biochim Biophys Acta, 2010,1805(1):72-86.
15 Lei Z, Li B, Yang Z, et al. Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J]. PLoS One, 2009, 4(10): e7629.
16 Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response[J]. Acta Biochim Biophys Sin(Shanghai), 2014, 46(3):220-232.
17 Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
18 Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210 modulates cellularresponse to hypoxia through the MYC antagonist MNT[J]. Cell Cycle,2009, 8(17):2756-2768.
19 Chang W, Lee CY, Park JH, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013,14(1):69-76.
20 Shang C, Hong Y, Guo Y, et al. MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A[J]. Med Sci Monit, 2014, 20: 2571-2577.
21 Chan SY, Zhang YY, Hemann C, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2 [J]. Cell Metab, 2009,10(4):273-284.
22 Devlin C, Greco S, Martelli F, et al. miR-210: more than a silent player in hypoxia[J]. IUBMB Life, 2011, 63(2):94-100.
23 He M, Lu Y, Xu S, et al. MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells[J]. Cell Death Dis, 2014,5:e1090.
24 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
25 Puisségur MP, Mazure NM, Bertero T, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity[J]. Cell Death Differ,2011, 18(3):465-478.
26 Nishida N, Yano H, Nishida T, et al. Angiogenesis in cancer[J]. Vasc Health Risk Manag, 2006, 2(3):213-219.
27 Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells[J]. J Biol Chem, 2013, 288(48):34343-34351.
28 Cui H, Seubert B, Stahl E, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes[J]. Oncogene, 2015,34(28):3640-3650.
29 Qu A, Du L, Yang Y, et al. Hypoxia-inducible MiR-210 is an Independent prognostic factor and contributes to metastasis in colorectal cancer[J]. PLoS One, 2014, 9(3):e90952.
30 Chen J, Wang W, Zhang Y, et al. Predicting distant metastasis and chemoresistance using plasma miRNAs[J]. Med Oncol, 2014,31(1):799.
31 Ellermeier C, Vang S, Cleveland K, et al. Prognostic microRNA expression signature from examination of colorectal primary and metastatic tumors[J]. Anticancer Res, 2014, 34(8):3957-3967.
32 Ying Q, Liang L, Guo W, et al. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J]. Hepatology, 2011,54(6):2064-2075.
33 Redova M, Poprach A, Besse A, et al. MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma[J]. Tumour Biol, 2013, 34(1):481-491.
Regulation of HIF-1α/miR-210 loop on energy metabolism and angiogenesis in hypoxic condition
Cao Zhiyun1, Zhang Zhideng2, Chen Xuzheng1, Huang Zhengrong3, Wang Lei4, ChenLiwu5, Chen Ruiqi6, Liao Lianming7.1Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;2Inspection and Quarantine Technique Centre of Fujian Entry-exit Inspection and Quarantine Bureau, Fuzhou 350003, China;3Department of Integrated Chinese and Western Medicine, Fujian Provincial Cancer Hospital, Fuzhou 350014,China;4Department of Oncology, Shanghai General Hospital, Shanghai 200080, China;5Department of General Surgery, the Second Hospital of Fujian Province, Fuzhou 350003, China;6476 Clinical Department, Fuzhou General Hospital, Fuzhou 351100, China;7Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, China
Liao Lianming, Email: llm@fjtcm.edu.cn
HIF-1 is a core regulatory factor in hypoxic signaling pathways of tumor. Studies show that miR-210 plays a synergistic role in the HIF-1-mediated biological activities including angiogenesis, energy metabolism, cell proliferation, apoptosis, invasion and metastasis. In hypoxia miR-210 is up-regulated by HIF-1α and miR-210 in turn enhances the stability of HIF-1α, thus the two together constitute the HIF-1α/miR-210 regulation loop and regulate various biological behaviors of tumor cells. In this review, we focus on the regulation of tumor energy metabolism and angiogenesis by HIF-1 /miR-210.
Aryl hydrocarbon receptor nuclear translocator; MicroRNAs; Energy metabolism; Angiogenesis
2015-12-23)
(本文编辑:蔡晓珍)
10.3877/cma.j.issn.2095-1221.2016.03.008
国家自然基金项目(81302954)
350122 福州,福建中医药大学中西医结合研究院1;350003 福州,福建出入境检验检疫局检验检疫技术中心2;350014 福州,福建省肿瘤医院中西医结合科3;200080 上海市第一人民医院肿瘤科4;350003 福州,福建省第二人民医院普外科5;351100 福州,南京军区福州总医院476临床部药剂科6;350004 福州,福建医科大学附属协和医院7
廖联明,Email:llm@fjtcm.edu.cn
曹治云, 张志灯, 陈旭征. 低氧条件下低氧诱导因子1α/miR-210调节回路对肿瘤能量代谢及血管生成的调控[J/CD].中华细胞与干细胞杂志:电子版, 2016, 6(3):195-198.