胶质瘤中分子标记物的应用进展
2016-01-24涂艳阳张永生第四军医大学唐都医院实验外科唐都医院陕西西安70038
涂艳阳,祁 婧,张永生(第四军医大学:唐都医院实验外科,唐都医院,陕西西安70038)
·述评·
胶质瘤中分子标记物的应用进展
涂艳阳1,祁 婧1,张永生2(第四军医大学:1唐都医院实验外科,2唐都医院,陕西西安710038)
【Abstract】Gliomas are a common central nervous system tumor. The malignant gliomas are the most lethal in all gliomas,with a poor prognosis.The overall survival of GBM patients is only 12 to 14 months after diagnosis.With the personal medication precision progress,therapeutic options for various tumors have become gradually dependent on the molecular spectrum of patients.Malignant gliomas are one of the tumors in which treatment response relies largely on the molecular characteristics of the tumor.Therefore,awareness of the genetic background of the patients will help decision-making regarding the best treatment strategy to use.In this paper,a novel molecular classification of gliomas based on recent findings of their genetic characteristics is introduced. Representative molecular markers(IDH1 mutation,1p19q co-deletion,EGFRvIII amplification and MGMT promoter methylation)are described.In addition,the progress of malignant gliomas omics studies are briefly discussed.Finally,a novel concept for non-invasive detection that could facilitate both diagnosis and treatment monitoring is presented.There is no doubt that the use of molecular profiling by biomarkers will indeed improve the overall survival and quality of life of malignant gliomas patients.
【Keywords】glioblastoma;molecular markers;therapeutic strategies
胶质瘤是一种常见的成人中枢神经系统肿瘤.恶性胶质细胞瘤的预后相对较差,是所有胶质瘤中最致命的.恶性胶质瘤患者确诊后的总生存期仅为12~14个月.随着个人用药精度的不断提高,肿瘤治疗方案逐渐依赖于患者的分子谱.恶性胶质瘤的治疗响应很大程度上依赖于肿瘤的分子特征.因此,对于每个患者遗传背景的认识将有助于选择最佳的治疗策略.在本文中介绍了一种基于最新发现的遗传特性的新型胶质瘤分子分型.对代表性的分子标记,如IDH1突变、1p19q共缺失、MGMT启动子甲基化以及EGFRvIII扩增等进行说明.此外,还针对恶性胶质瘤组学研究的发展进行简要讨论.无创检测这一新的概念可以促进现有的诊断和治疗监控.利用生物标记物的使用分子分析确实会提高恶性胶质瘤患者的整体存活率和生活质量.
恶性胶质瘤;分子标记物;治疗策略
0 引言
胶质瘤是最常见的原发性中枢神经系统肿瘤,发病率几乎达到脑肿瘤的50%.胶质瘤分为室管膜瘤、星形细胞瘤、少突胶质细胞、脑干胶质瘤、视神经胶质瘤以及根据主要细胞类型的混合胶质瘤.根据世界卫生组织执行的病理表现型,胶质瘤进一步分为四个等级(Ⅰ~Ⅳ),其中Ⅰ和Ⅱ级反映了低级别胶质瘤,Ⅲ和Ⅳ级(胶质母细胞瘤,恶性胶质瘤)反映了高级别胶质瘤.近60%的高级别胶质瘤为恶性胶质瘤,发病率约为3/10 0000[1].
恶性胶质瘤是最常见的成人中枢神经系统肿瘤,约占所有颅内肿瘤的17%[2].对于治疗恶性胶质瘤的标准策略是手术后进行放疗和化疗.然而,由于肿瘤细胞的大量浸润和快速增殖,恶性胶质瘤患者的生存期只有12~14个月,5年存活率最高为9.8%[3].对于Ⅱ和Ⅲ级胶质瘤,预后相对较好,但生存期仍然很差,分别为2年和2~5年[4].
1 恶性胶质瘤的分子分型
根据病理神经胶质瘤标准,世界卫生组织将等级分为Ⅰ~Ⅳ,而新出现的分子分型是基于癌症基因组计划(the cancer genome atlas,TCGA)数据.作为最早出现的通过TCGA研究的癌症类型,恶性胶质瘤分为经典型、间质型、神经元型和神经元前型[5-6].神经元前型恶性胶质瘤表现出α型血小板源型生长因子受体的突变、异柠檬酸脱氢酶的点突变(isocitrate dehydrogenase,IDH)、磷脂酰肌醇3-激酶的过度表达和通路激活以及翻译阻遏4EBP1的抑制[6-7].经典型表现出7号染色体扩增和10号染色体的损失、EGFR扩增/突变、凋亡蛋白和丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)略微下调以及Notch1和Notch3的水平增加[6-7].神经元亚型通常表达神经元标记物,如神经细丝蛋白轻链多肽、γ-氨基丁酸A受体α1、突触结合蛋白1以及溶质载体家族12-成员5[6].
胶质瘤 CpG岛甲基化表型(glioma-CpG island methylator phenotype,G-CIMP)是用于胶质瘤分级的新的分子特征.Noushmehr等[8]确定TCGA数据库中272个恶性胶质瘤病例中G-CIMP表现出大量位点的协同甲基化.这些数据在另一组恶性胶质瘤和低级别胶质瘤中进行了验证,因为低级别胶质瘤中也普遍存在G-CIMP肿瘤.验证结果表明它们属于神经元前亚型.G-CIMP肿瘤与神经元前亚型有共同的通路特征,同时Cox-2、IGFBP2以及膜联蛋白1下降,且GCIMP肿瘤患者趋于年轻化[8].Brennan等[7]证实GCIMP表型有助于通过影响下游靶基因来改善神经元前亚型恶性胶质瘤患者预后.分子变化表明大多数非G-CIMP间充质恶性胶质瘤是从神经元前型演变来的[9].
Turcan等[10]表明IDH1突变是通过甲基化重构来建立G-CIMP亚型.他们进一步验证在G-CIMP肿瘤中观察到的广泛DNA甲基化是否有助于通过DNA甲基转移酶(DNA methyltransferases,DNMT)抑制剂治疗IDH1突变胶质瘤初始化细胞来实现神经胶质瘤细胞去分化.该数据表明靶向病理DNA甲基化可逆转IDH1突变引起的甲基化状态,阻止胶质瘤起始细胞分化以及加强对肿瘤的控制[11].这些发现强调DNA甲基化在脑胶质瘤发展和治疗中的重要性作用.
2 基于遗传变化的生物标记物
2.1IDH突变 IDH是代谢的关键因素之一,催化异柠檬酸产生酮戊二酸和二氧化碳的氧化脱羧反应. IDH1和IDH2利用NADP+作为辅因子催化相同的反应.IDH基因突变(IDH1和IDH2)在低等级胶质瘤中超过70%,在恶性胶质瘤中同时存在[10,12-13].最常见的 IDH1突变(超过 95%)发生在精氨酸 132(R132H).野生型IDH1催化异柠檬酸生成α-酮戊二酸(一种潜在的癌代谢物),而在IDH1突变后新生性酶功能催化α-酮戊二酸生成2-羟基戊二酸,2-羟基戊二酸是与遗传性高血压、遗传不稳定性和恶性转化等关联的癌代谢物.IDH1突变是一种最常见的在胶质瘤最早发生的遗传改变,且是用于胶质瘤患者最有效的诊断和预测指标的生物标记.Izquierdo-garcia等[13]研究TCGA数据发现IDH1突变神经胶质瘤患者的丙酮酸羧化酶的水平比野生型更高.Esmaeili等[14]表明IDH1-R132H突变影响磷酸乙醇胺和甘油磷酸胆碱以及改变了脑胶质瘤中的磷脂代谢.
在人星形胶质细胞中突变IDH1的强制表达来模拟G-CIMP阳性低级别胶质瘤的甲基化的改变. Duncan等[15]发现IDH1突变是G-CIMP表型的分子基础,其中强调的是致癌作用和制定治疗策略的表观遗传学的重要性.采用聚类分析,Shinawu等[16]在研究1例长期存活胶质瘤患者的G-CIMP阳性表型,发现该表型与IDH1突变状态紧密相关.Usher等[17]发现CD4+Th1细胞和抗体自发地发生在IDH1-R132H胶质瘤患者,且特异性识别IDH1-R132H,显示出有效突变特异的抗肿瘤免疫反应.
2.21p19q共缺失 已报道胶质瘤经常发生染色体1p和19q上遗传信息的缺失.胶质瘤中发现少突胶质细胞中1p上等位基因丢失有如下几种:Ⅱ级少突胶质细胞(6/6),Ⅲ级间变性少突胶质细胞(5/6)和Ⅱ~Ⅲ级混合少突胶质细胞(2/3)[18].19q上等位基因缺失发生率特别高,在少突胶质细胞瘤和混合胶质瘤中分别为81%和31%.75%以上在19q上的等位基因缺失的肿瘤细胞也表现出在1p上的基因座杂合性缺失[19].存在1p19q共缺失的患者进行放疗后有更长的总生存期[20].研究表明,存在1p19q共缺失的患者进行放疗结合PCV疗法(甲基苄肼,洛莫司汀和长春新碱)比单独接受放疗的患者生存期延长两倍[21].
有证据表明1p19q共缺失不仅作为一个有利的预后因素,而且可作为化学敏感性的预测.目前1p19q共缺失是胶质瘤预后并与其它组合治疗反应的评估标记.共缺失1p19q和MGMT启动子甲基化是独立的正预后指标.此外由于1p19q缺失肿瘤也表现出IDH突变,1p19q共缺失与IDH突变是密切相关的.IDH突变、MGMT启动子甲基化和1p19q共缺失患者的存活期大大增加[22-23].
2.3O6-甲基鸟嘌呤DNA甲基转移酶(MGMT)启动子甲基化 MGMT是一种DNA修复酶,可在烷化剂(如替莫唑胺)诱导时直接从鸟嘌呤O6位去除烷基,从而减少肿瘤细胞对于化疗剂的反应.MGMT启动子经常在神经胶质瘤细胞中发生甲基化,随后导致MGMT活性丧失[7,24].临床研究已预先证明MGMT启动子甲基化是一个正预后标志,可以使得肿瘤对放疗更敏感[20].大量证据表明MGMT甲基化水平是初诊为脑胶质瘤对于烷基化剂反应的阳性预测标记物[25-27].另两个前瞻性随机III期试验报道MGMT启动子甲基化状态可以在老年患者替莫唑胺治疗中起到一种预测作用[28-29].但是MGMT启动子甲基化水平并不是替莫唑胺治疗唯一独立的预测指标.
2.4EGFRvIII扩增 组成型活性突变EGFRvIII,已知的de2-7 EGFR或ΔEGFR,存在于25%~30%恶性胶质瘤中,同时还存在EGFR扩增/过表达[30-31].在大多数(97%)经典亚型胶质瘤观察到存在EGFR扩增,但是在其他亚型很少见到.EGFR点基因突变包括vIII(在12/22中的经典亚型样品中鉴定),并伴有p53缺失突变.研究发现在G-CIMP阳性恶性胶质瘤中EGFR信号受到抑制,而对G-CIMP表型的诱导与EGFR和H-ras基因的表达抑制有关,会导致EGFR信号的抑制[32].
EGFRvIII通过激活其他受体酪氨酸激酶(receptor tyrosine kinase,RTK)在肿瘤发生中发挥作用. Greenall等[33]证实 MET反式激活转录与体外U87MG胶质瘤细胞中 EGFRvIII的活性成正比. EGFRvIII和反式激活转录RTK两者同时靶向显著比单独任一药剂处理的小鼠模型有更长生存期,说明反式激活转录RTK的有效封锁对于治疗EGFRvIII阳性神经胶质瘤可能是一种治疗策略.
2.5其他标记 除了上述已经充分研究的分子标记,还有一些其它因素也与神经胶质瘤患者预后相关.NF1突变经常发生在骨髓间质亚型.Ozawa等[9]研究发现NF1缺失可以使得神经元前型肿瘤转化为间质亚型.在神经胶质瘤Myc的过表达为60%~80%,并且其表达水平与分级相关[34].增加的Myc基因的活性在减弱神经元分化以及促进恶性胶质瘤启动细胞的自我更新能力等方面起着重要作用[34-35].
3 组学为基础的生物标记物
随着测序技术的发展,全基因组、外显子组和RNA测序已经被广泛地应用到胶质瘤组学研究中.通过结合全基因组、外显子组、转录和甲基化测序分析,确定在弥漫性内在脑桥胶质瘤发现激活素受体基因ACVR1复发性体细胞突变[36-37].这些突变引起组成性激活蛋白,导致了Smad蛋白的磷酸化和DNA结合蛋白1和2(ID1/2)下游目标抑制剂的过表达[37].在儿科高级的星形胶质细胞瘤中ACVR1中的功能获得性突变会引起骨形态蛋白(bone morphogenetic protein,BMP)-ACVR1通路超活化、增加Smad 1/5/8的磷酸化以及BMP靶基因的活化[38].在儿科高级别胶质瘤细胞中也检测到其他常见的突变,如受体酪氨酸激酶-Ras-PI3K信号通路(68%)、组蛋白修饰基因(73%)和染色质重塑的基因(59%)[36].在脑干神经胶质瘤,通过外显子组测序鉴定和有针对性的突变分析得到在PPM1D上的肿瘤特异性突变(p53诱导蛋白磷酸酶1D)[39].作为体细胞突变的高频率靶点,PPM1D突变增强细胞抑制DNA损伤应答的活化能力,使其成为脑干胶质瘤治疗的潜在治疗靶点.
4 展望
识别恶性胶质瘤调控网络的分子特征可以增加个性化药物的精确度.但是目前的检测方法落后于分子谱进展.用于癌症诊断和响应评价的方法很大程度上取决于病理和成像技术.内窥镜和腹腔镜检查是侵入性方法,成像方法的灵敏度受肿瘤最小尺寸的限制.因此容易观察的样品(如血液、尿液和脑脊髓液)是可用于预测患者预后,决定治疗策略以及监测治疗反应和疾病进展的有效液体活检.
循环肿瘤细胞和循环脱细胞核酸是血浆/血清中两个重要的“资源”,为无创检测方法提供线索.癌细胞的游离DNA(cfDNA)在凋亡和坏死期间被释放到肿瘤微环境中.cfDNA的大小范围从小的70~200碱基对的片段到大的约21千碱基的片段[40].cfDNA的半衰期是5分钟至几小时,因为这些片段由肝脏和肾脏快速有效循环清除.由于它们可以实时反映疾病的进展和周转,因此cfDNAs是活检完美指标[41-43].
最近一项研究表明,肿瘤实体IDH1突变的患者血浆中可以检测到IDH1突变.同时确定了IDH1可检测性的高比率和血脑屏障破坏之间的关系[44].另一项研究报告显示在星形细胞瘤患者9/12血清样品和肿瘤组织中检测到p16异常启动子甲基化[45].在血清中也发现MGMT甲基化,其存在与胶质瘤组织高度相关[46].在恶性胶质瘤患者血清中也能检测到其他标记物(如染色体1p,19q和10q杂合性缺失),并且与匹配高度肿瘤组织高度相关[47].未来对胶质瘤生物标记物的研究工作必须着眼于鉴定用于检测和提高检测方法的灵敏度和可行性的特异分子.
[1]de Groot JF.High-grade gliomas[J].Continuum,2015,21(2 Neurooncology):332-344.
[2]Wu CX,Lin GS,Lin ZX,et al.Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma[J].World J Surg Oncol,2015,13:97.
[3]Stupp R,Mason WP,Van den Bent MJ,et al.Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma[J]. N Engl J Med,2005,352(10):987-996.
[4]Bell C,Dowson N,Fay M,et al.Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET:toward clinical translation[J].Semin Nucl Med,2015,45(2):136-150.
[5]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.
[6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J]. Cancer Cell,2010,17(1):98-110.
[7]Brennan CW,Verhaak RG,McKenna A,et al.The Somatic Genomic Landscape of Glioblastoma[J].Cell,2013,155(2):462-477.
[8]Noushmehr H,Weisenberger DJ,Diefes K,et al.Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma[J].Cancer Cell,2010,17(5):510-522.
[9]Ozawa T,Riester M,Cheng YK,et al.Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma[J].Cancer Cell,2014,26(2):288-300.
[10]Turcan S,Rohle D,Goenka A,et al.IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype[J].Nature,2012,483(7390):479-483.
[11]Turcan S,Fabius AW,Borodovsky A,et al.Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine[J].Oncotarget,2013,4(10):1729-1736.
[12]Balss J,Meyer J,Mueller W,et al.Analysis of the IDH1 codon 132 mutation in brain tumors[J].Acta Neuropathol,2008,116(6):597-602.
[13]Izquierdo-garcia JL,Cai LM,Chaumeil MM,et al.Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase[J].PLoS ONE,2014,9(9):e108289.
[14]Esmaeili M,Hamans BC,Navis AC,et al.IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma[J]. Cancer Res,2014,74(17):4898-4907.
[15]Duncan CG,Barwick BG,Jin G,et al.A heterozygous IDH1R132 H/ WT mutation induces genome-wide alterations in DNA methylation[J]. Genome Res,2012,22(12):2339-2355.
[16]Usher CL,Handsaker RE,Esko T,et al.Structural forms of the human amylase locus and their relationships to SNPs,haplotypes and obesity[J].Nat Genet,2015,47(8):921-925.
[17]Schumacher T,Bunse L,Pusch S,et al.A vaccine targeting mutant IDH1induces antitumour immunity[J].Nature,2014,512(7514):324-327.
[18]Bello MJ,Vaquero J,de Campos JM,et al.Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors[J].Int J Cancer,1994,57(2):172-175.
[19]Reifenberger J,Reifenberger G,Liu L,et al.Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p[J].Am J Pathol,1994,145(5):1175-1190.
[20]Wick W,Hartmann C,Engel C,et al.NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine,lomustine,and vincristine or temozolomide[J].J Clin Oncol,2009,27(35):5874-5880.
[21]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.
[22]Zhang ZY,Chan AK,Ng HK,et al.Surgically treated incidentally discovered low-grade gliomas are mostly IDH mutated and 1p19q codeleted with favorable prognosis[J].Int J Clin Exp Pathol,2014, 7(12):8627-8636.
[23]Leu S,Von Felten S,Frank S,et al.IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival[J].Neuro-oncology,2013,15(4):469-479.
[24]Berghoff AS,Hainfellner JA,Marosi C,et al.Assessing MGMT methylation status and its current impact on treatment in glioblastoma[J]. CNS Oncol,2015,4(1):47-52.
[25]Mur P,Rodríguez de Lope Á,Díaz-Crespo FJ,et al.Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients[J].J Neurooncol,2015,122(3):441-450.
[26]Minniti G,Salvati M,Arcella A,et al.Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide[J].J Neurooncol,2011,102(2):311-316.
[27]Hegi ME,Diserens AC,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.
[28]Malmström A,Grønberg BH,Marosi C,et al.Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma:the Nordic randomised,phase 3 trial[J].Lancet Oncol,2012,13(9):916-926.
[29]Wick W,Platten M,Meisner C,et al.Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA-08 randomised,phase 3 trial[J].Lancet Oncology,2012,13(7):707-715.
[30]Pelloski CE,Ballman KV,Furth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.
[31]Cominelli M,Grisanti S,Mazzoleni S,et al.EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide[J].J Natl Cancer Inst,2015,107(5):1-13.
[32]Li J,Taich ZJ,Goyal A,et al.Epigenetic suppression of EGFR signaling in G-CIMP+glioblastomas[J].Oncotarget,2014,5(17):7342-7356.
[33]Greenall SA,Donoghue JF,Van Sinderen M,et al.EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma:mechanism and therapeutic implications[J].Oncogene,2015,34(41):5277-5287.
[34]Annibali D,Whitfield JR,Favuzzi E,et al.Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J].Nat Commun,2014,5:4632.
[35]Zheng H,Ying H,Yan H,et al.Pten and p53 converge on c-Myc to control differentiation,self-renewal,and transformation of normal and neoplastic stem cells in glioblastoma[J].Cold Spring Harb Symp Quant Biol,2008,73:427-437.
[36]WU G,Diaz AK,Paugh BS,et al.The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma[J].Nat Genet,2014,46(5):444-450.
[37]Buczkowicz P,Hoeman C,Rakopoulos P,et al.Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations[J].Nat Genet,2014,46(5):451-456.
[38]Fontebasso AM,Papillon-Cavanagh S,Schwartzentruber J,et al. Recurrent somatic mutations in ACVR1 in pediatric midline highgrade astrocytoma[J].Nat Genet,2014,46(5):462-466.
[39]Zhang L,Chen LH,Wan H,et al.Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas[J]. Nat Genet,2014,46(7):726-730.
[40]Jahr S,Hentze H,Englisch S,et al.DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J].Cancer Res,2001,61(4):1659-1665.
[41]Schwarzenbach H,Hoon DS,Pantel K.Cell-free nucleic acids as biomarkers in cancer patients[J].Nat Rev Cancer,2011,11(6):426-437.
[42]Heidary M,Auer M,Ulz P,et al.The dynamic range of circulating tumor DNA in metastatic breast cancer[J].Breast Cancer Res,2014,16(4):421.
[43]Murtaza M,Dawson SJ,Tsui DW,et al.Non-invasive analysis of acquired resistancetocancertherapybysequencingofplasma DNA[J].Nature,2013,497(7447):108-112.
[44]Boisselier B,Gállego Pérez-Larraya J,Rossetto M,et al.Detection of IDH1 mutation in the plasma of patients with glioma[J].Neurology,2012,79(16):1693-1698.
[45]Wakabayashi T,Natsume A,Hatano H,et al.p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas[J].Neurosurgery,2009,64(3):455-461.
[46]Balaňa C,Ramirez JL,Taron M,et al.O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme[J].Clin Cancer Res,2003,9(4):1461-1468.
[47]Lavon I,Refael M,Zelikovitch B,et al.Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades[J].Neuro-oncology,2010,12(2):173-180.
The progress of molecular biomarkers in gliomas
TU Yan-Yang1,QI Jing1,ZHANG Yong-Sheng2
Fourth Military Medical University:1Department of Experimental Surgery of Tangdu Hospital,2Tangdu Hospital,Xi'an 710038,China
R739.4
A
2095-6894(2016)07-01-05
2016-06-05;接受日期:2016-06-22
国家自然科学基金面上项目(81572983);第四军医大学科技发展基金(2016XD306)
涂艳阳.博士,副教授,副主任医师.Tel:029-84777469
E-mail:tu.fmmu@gmail.com