例谈两位数乘两位数笔算乘法的困惑解析与算法建构
2015-11-12于正军
于正军
新课程强调教师的教学应以学生的认知发展水平和已有经验为基础,这里所指的“学生的认知发展水平和已有经验”理应是学生在学习过程中所凸显出来的一种“认知现实”。即激发学生在学习过程中将已学的数学知识自然转化为新知识学习的一种认知经验和学习能力,而不仅仅泛指学生已学的知识或已经积累的学习经验,强调的是在学生“认知现实”背景下的一种知识经验的有效迁移和主动建构。笔者通过对苏教版三年级下册两位数乘两位数笔算乘法教学中学生所呈现出来的困惑现象分析,旨在说明数学课堂教学理应遵循学生的认知现实,方能促进算法的自然建构和算理的深度理解。
一、 困惑呈现:下一步路在何方
一线教师在课堂上出示两位数乘两位数28×12的算式后,直接依据教材中的提示,机械地教给学生进行竖式计算的方法,学生在教师的带领下轻松地完成了28×12竖式计算过程。此时教师自认为学生已经掌握了两位数乘两位数的笔算方法,继而顺势出示两道练习题62×41和13×72,让学生独立练习。练习结束后,教师带领学生进行集体交流时,学生的竖式书写过程令教师惊诧不已,优秀学生是“望而却步”,中、下等生是瞎写一通。仔细观察学生的竖式书写:
左题中“4×6”得“24”,学生不知道在竖式中如何书写、“24”写在哪儿。同样,右题中“7×3”得“21”,学生也不清楚在竖式中的正确书写位置,不知道是直接写下“21”,还是写“1”进“2”。学生在计算这两道竖式时,其错误及困惑聚焦为:十位上的数乘下来,得数何时可以直接写下来,何时需要向前一位进位?此时学生在笔算认知上已无法确定下一步路在何方。
二、 学情解析:忽视了学生的认知现实
两位数乘两位数对于学生来说,是计算学习过程中的一次新“跨越”。然而,由于教师在教学实践中忽视了学生的计算现实,竖式计算书写过程中两次乘积的计算步骤和方法以及书写格式未能成为学生有效探索笔算方法过程中所应理解的“数学概念”。这说明两位数乘两位数竖式书写格式及其计算方法的建构未能源于学生的思维特点和认知水平,如此知识结构的形成不是基于学生认知现实而得以自然建构与生长,因而学生无法吸收与理解。
为什么当学生直接计算62×2和13×7时,学生能正确计算和规范书写,而学到两位数乘两位数时,反而把两位数乘一位数的已有知识与计算技能遗忘了,是什么因素干扰了学生的思维?为什么已有知识经验不能促进新知识的形成与建立,反而阻碍了新知的生成与建构?
笔者以为,教师在教学实践中忽视了学生的已有学习经验与认知现实,未能引领学生经历新知识的形成过程,未能从学生的认知现实出发,去体验新知识的“来龙去脉”,去触摸新知识形成的“源头”,而是“照搬”教材,机械地把教材中的方法“灌输”给学生。教材中直接呈现方法提示 ■,接下去怎样算呢?这一过程直接呈现在学生面前,学生一定感到很突然、很迷茫,不知道“56”是哪儿来的,或无法理解为什么可以这样得出“56”。如此告知,未能遵循儿童的认知经验和思维现实。沿着儿童的思维不难体会,只要将两位数乘两位数竖式■呈现在学生面前,无论是儿童的思维直觉,还是对竖式运算的直观感觉,学生尝试练习■一定会认为个位上8与2相乘,十位上2与1相乘,因为学生已经积累了个位上数相加、减和十位上数相加、减的两位数加减法运算经验。所以,教材中第一步呈现“56”,学生一下子无法理解“56”是怎么算出来的、为什么这么算,脱离了儿童的认知现实,断裂了数学知识的前后联系,忽视了知识的起源与发展。
回顾学生对两位数乘法笔算的已有知识经验理应是两位数乘一位数的笔算方法,应该引领学生从两位数乘一位数乘法笔算的经验与方法逐步向两位数乘两位数乘法笔算进行迁移与转化,让学生在两位数乘一位数的基础上逐步建构起两位数乘两位数的乘法笔算的计算方法与书写格式。在日常教学实践中,教师如果未能从儿童的认知现实出发,而是机械地教教材,直接以告知的口吻告诉学先用2乘8,再用2乘2,然后用1乘8,再用1乘2,那么,中等偏下的学生就无法记住这样的计算方法和运算顺序,需要经过几节课的强化训练,学生才可能记住。
而教材中是从口算的角度引导学生向笔算进行迁移。28×10=280,28×2=56,280+56=336。如此呈现不仅忽视了学生的认知现实,也脱离了知识间的应然联系。因为这样的口算方法本身并不符合儿童的认知现实和情感现实,在平时的教学中也未发现有如此口算方法的学生。首先,这一口算过程所支撑的计算算理涉及乘法分配律,此阶段的学生思维还未触及此规律,而且此运算律是小学阶段学生最难以掌握与理解的运算规律,三年级学生的运算思维还未能达到如此抽象的思维水平。其次,从学生的情感上分析,学生总是希望在解决问题的过程中能找到简单、直观、明了的计算方法,但三步计算中同时伴随着乘法进位与加法进位,这是计算过程中的复杂因素,也是学生在计算过程中容易出错的因子。再次,口算与笔算的算理与算法所凸显出来的运算思维不在同一思维水平上,因为笔算知识是在口算知识不能适应人在社会中的生存发展需要而自然产生的。即当人们在生活应用中不能直接通过口算得出结果时,新的一种计算方法——笔算即竖式计算便应运而生。因此,从口算算理向笔算方法进行迁移不符合新知识的形成结构和学生的认知特点,它对笔算计算方法不能自然形成有效的迁移与建构作用。因此,两位数乘两位数的笔算需要从两位数乘一位数的笔算方法进行转化,应该由“笔算引出新的笔算”,而不是由口算引出笔算。
三、 算法建构:由笔算走向新的笔算
想要让学生能自然地掌握并理解两位数乘两位数竖式计算的方法及算理,教师须要从知识的“生长性”出发,以“儿童的方式”设计教学,引领学生这种经历知识“生长”的过程,遵循儿童的认知现实,顺应儿童的思维方式。所以,教学时需要教师设计出如下“儿童化”的实践探索,促使学生以儿童的认知方式吸纳新知,内化新知。
1.出示■并设问:这是几位数乘几位数?
2.两位数乘两位数可以拆成几个两位数乘一位数的算式?
3.■你会拆成哪两个两位数乘一位数竖式计算的算式?
4.由于学生已经积累了两位数乘一位数的经验,而且学生已经形成了当两位数乘一位数时,写竖式总是把两位数写在上面,一位数写在下面的计算技能,所以课堂上学生会很快把拆成这两个竖式(观察发现学生拆时有意把十位上的1还写在十位上)。
5.学生分别算出这两道两位数乘一位数的结果:。这是学生已学的知识,所以无论是计算还是书写,学生都能轻松完成。
6.引导学生思考:现在拆成进行计算,怎样把它们的计算过程合并在的竖式计算的过程中呢?
7.学生尝试竖式合并,大部分学生合并成这种形式。学生这种错误是符合学生计算现实的,这是学生在学习过程中真实的一面。
8.教师化学生的错误资源为有效教学资源:(1)“56“是怎么得到的?(2)“28”是怎么得到的?这里的“1”表示什么?所以28乘1个十实际上得到28个什么?(3)因此,“28”书写时,应如何对齐数位?这样设计教学,不仅让学生经历了两位数乘两位数竖式计算方法的形成过程,也有效突破了学生的认知难点,不会出现前面的两种困惑现象。
综上所述,无论是教学内容的选择,还是学习方法的运用,都必须贴近儿童实际、尊重儿童学习现实,这样才能有效促进儿童体验与探索、思考与理解,数学课堂才会由被动走向主动,由低效走向高效。
【责任编辑:陈国庆】